HITACHI

Application Brief

RBM Tsukiji Bldg., 15-5, Shintomi 2-chome, Chuo-ku, Tokyo 104-0041 TEL:+81-3-6280-0068 FAX:+81-3-6280-0075 http://www.hitachi-hitec-science.com

DMAN0.5 JUN.1989

Dynamic Viscoelastic Data of Polyethylene

1. Sample Low Density Polyethylene : LDPE (Brand Name : Mirason 68)

High Density Polyethylene: HDPE (Brand Name: Hi Zex 5000F)

2. Chemical Structure

- CH_2-CH_2

3. Thermal History LDPE Press film: after pressing at 150 allowed to cool to

room temperature.

HDPE Press film: after pressing at 180 allowed to cool to

room temperature.

4. Instruments SDM5500 Rheol. Station

DMS100 Dynamic Mechanical Spectrometer

5. Conditions Deformation mode : Bending mode

Sample Size : LDPE $20.00(\ell) \times 12.05(w) \times 1.70(t)$ mm

HDPE $20.00(\ell) \times 6.45(w) \times 2.22(t)$ mm

Temperature Range: LDPE -150 ~ 90

HDPE -150 ~ 130

Heating Rate: 2K/min

Atmosphere: N_2

Frequency: 0.5,1,2,5,10Hz

6. Transition temperature and activation energy based on tanδ

	LDPE		HDPE		
	Transition	ΔEa	Transition	ΔEa	Comments
	Temp.()	(kJ/mol)	Temp.()	(kJ/mol)	
α Transition	54 (1Hz)	145	119 (1Hz)	-	Crystal Relaxation
α' Transition	-	-	79 (1Hz)	-	Grain Boundary relaxation
β Transition	-19 (1Hz)	-	-32 (1Hz)	-	Glass Transition
γ Transition	-124 (1Hz)	69	-121 (1Hz)	129	Local mode relaxation

7. Thermal Analysis Data

LDPE Tm: 106.2 , Δ Hm: 139.6 J/g, DSC 10K/min HDPE Tm: 132.1 , Δ Hm: 219.4 J/g, DSC 10K/min

· Comparison of tano curves for LDPE and HDPE

Three dispersions are present in the LDPE data from the high temperature side: α , β , and γ . The α dispersion is attributed to crystal relaxation, the β dispersion is attributed to the main dispersion (glass transition) of the amorphous portion and the γ dispersion is attributed to the local mode relaxation of the amorphous portion. In the HDPE data, an α 'dispersion is present, in addition to the three previously mentioned dispersions. This α 'dispersion is attributed to the grain boundary relaxation.

The figure below compares the $tan\delta$ curves of the low and high density polyethylene measurement results. The β dispersion peak of the HDPE is lower than that of the LDPE. Furthermore, the α dispersion peak for the HDPE is at a higher temperature. These results are likely due to the following reasons. High density, highly crystallized polyethylene has little main chain branching and a lower amorphous component than LDPE. This results in a lower β dispersion, which is caused by glass transition. Conversely, due to the high amount of crystal lamellae in high density polyethylene, the α dispersion (crystal relaxation), which appears along with the α dispersion (grain boundary relaxation), is at a higher temperature.

