Application Brief

HITACHI

Hitachi High-Tech Science Corporation
RBM Tsukiji Bldg., 15-5, Shintomi 2-chome, Chuo-ku, Tokyo 104-0041
TEL:+81-3-6280-0068 FAX:+81-3-6280-0075
http://www.hitachi-hitec-science.com

TA NO.30 JUN.1986 TG/DTA Measurement of Cement

1. Introduction

Cement, as one type of complex mineral, is widely used as a building material. Especially, the most typical cement is Portland cement. This brief introduces TG/DTA measurement data using Portland cement (NBS: SRM633, JCA(Japan Cement Association): 211M) prepared as a standard.

③ : NBS Hydrated

2. Measurement example

Figure 1 shows the TG & DTG data of each cement sample. Each weight loss is seemed to be as follows:

~ 100°C	Dehydration of free water.
120 ~ 160°C	Dehydration of gypsum crystal water.
400 ~ 500°C	Dehydration of calcium hydroxide.
500 ~ 750°C	Dehydration from OH of materials.

The difference of weight loss is observed in the weight loss of ① and ②, and this shows difference of the component ratio. The free water and composite OH base is also increased in the hydrated cement from ① and ③.

Figure 2 shows the DTA data of each cement sample. In each cement sample, an endothermic peak appears and a relationship exists between the weight loss and the size of the peak.

As shown above, information about the temperature of the cement was obtained through TG/DTA measurements. However, because the weight loss of cement were small, a high sensitivity TG/DTA instrument was necessary.

