Measurement of Sn/Ni Layer in Ceramic Chip Component using FT150h

2015.2

Ceramic chip components such as multilayer ceramic chip capacitors are core elements of smart phones and in-vehicle computers. Recently, these devices have been shrinking in dimension because of the demands for a higher level of integration and increased functionality. It is necessary to control the thickness of the Sn and Ni layers in the electrodes of ceramic chip components. However, using X-ray fluorescence, it is difficult to simultaneously determine the thickness of the Sn and Ni layers, because a thick Sn layer strongly absorbs the fluorescence X-rays originating from Ni.

Equipped with a new x-ray collecting optical system and a Vortex detector, the FT150h allows simultaneous thickness measurements of a thick Sn layer and a Ni layer within a micro-spot region, which is difficult using a conventional instrument.

In this case study, the thicknesses of a Sn and Ni layer on Ag are measured simultaneously in a simulated sample of a ceramic chip component.

FT150 Series

Measurement of Thickness of Sn and Ni Layers

Measurement conditions and standard samples

Table 1 Measurement conditions

Instrument	FT150h	
Tube voltage	45 kV	
Beam diameter Note	35 μm φ	
Primary filter	Al1000	
Measurement time	30 s	
Measurement method	Thin Film FP	
	Sn Kα	
Analysis line	Ni Kα	
	Ag Kα	

Note: Defined as the diameter that encloses 90% of primary X-rays with an energy of 30 to 40 keV.

An Al substrate covered by thin-film standard materials (Sn 4.61 μ m, Ni 4.89 μ m, Ag 8.95 μ m) made by Hitachi High-Tech Science Corporation is registered as a reference material.

Samples

The measured samples consisted of the thin-film standard materials made by Hitachi High-Tech Science Corporation listed in Table 2.

Table 2 Specifications of measured samples

	Sn (µm)	Ni (μm)	Ag (μm)
(1)	2.01	1.90	8.95
(2)	4.61	1.90	8.95
(3)	9.43	4.89	8.95

For each sample, 10 measurements were performed, each for 30 seconds. Good repeatability was achieved, with a relative standard deviation (RSD) of less than 4%. Also, the thickness of the Ni layer could be accurately measured even under a Sn layer with a thickness of 10 μ m.

Thus, the FT150h enables simultaneous high-precision measurement of Sn and Ni layers within a micro-spot region, which is difficult using a conventional instrument.

Comparison of Sn $K\alpha$ spectra

A Sn layer with a thickness of about 5 μm was measured using the FT150h and a conventional FT9500X.

The FT150h with the new x-ray capillary system and the Vortex detector dramatically increased the intensity for the difficult-to-detect Sn K α peak.

Figure 1 Comparison of Sn spectra

Thickness measurement results *

Measurements were repeated 10 times and the precision and repeatability for the Sn and Ni thicknesses were evaluated.

Table 3 Thickness results for sample (1)

	Sn (μm)	Ni (μm)	Ag (μm)
Average	2.01	1.94	8.89
Standard deviation	0.051	0.037	0.046
RSD%	2.5%	1.9%	0.5%

Table 4 Thickness results for sample (2)

	Sn (μm)	Ni (μm)	Ag (μm)
Average	4.63	1.93	8.82
Standard deviation	0.049	0.043	0.050
RSD%	1.1%	2.2%	0.6%

Table 5 Thickness results for sample (3)

	Sn (μm)	Ni (μm)	Ag (μm)
Average	9.36	4.65	8.84
Standard deviation	0.068	0.164	0.122
RSD%	0.7%	3.5%	1.4%

^{*}These are example measurements and do not guarantee the performance of the instrument.