

HIRANUMA APPLICATION DATA		Karl Fischer Titrator	Data No.	KF9	Jun. 30, 2025
Water contents	Drugs and Medicines – KF Coulometry Thiamine Chloride Hydrochloride and Folic Acid				

1. Abstract

Water contents of drugs and medicines could be determined by Karl Fischer coulometric titrator. In coulometric titration, iodine of Karl Fischer reagent is generated by electrolysis and generated iodine quantitatively reacts with water. Reaction formula is described below.

When the moisture content is relatively high at the% level, the amount of sample added is as small as a few 10 mg. If the sample is in powder form, taking and adding samples with an “ultra-micro solid sampler” makes measurement easy and accurate. An example for water contents measurements of thiamine chloride hydrochloride and folic acid performed by with ultra-micro solid sampler are introduced here. The measurement method was determined with reference to *Japanese Pharmacopeia*.

Reference

1) Japanese Pharmacopoeia Eighteenth Edition

2. Apparatus and Reagents

(1) Apparatus

Titration : Karl Fischer Coulometric titrator MOICO, AQ-series
Electrolytic cell : Standard Cell without drain valve

(2) Reagents

Anode solution : HYDRANAL Coulomat AG (Honeywell)

Cathode solution : HYDRANAL Coulomat CG (Honeywell)

(3) Sampling tool

Fig.2.1 Ultra-micro solid sampler

3. Procedure

- (1) Fill 100 mL of anode solution and one ampoule of cathode solution into the electrolytic cell as shown in Fig.3.1.
- (2) Set the ultra-micro solid sampler on the lid of cell as shown in Fig.3.2.
- (3) Start blanking to attain stable background.
- (4) Take sample into the capsule and accurately weigh it.
- (5) Set the capsule on the sampler as pictured in the Fig.3.3.
- (6) Pull the plate of sampler to introduce capsule into the cell.
- (7) Start titration. Measurement parameter is shown in Table 4.1.
- (8) Set sample weight to sample size.

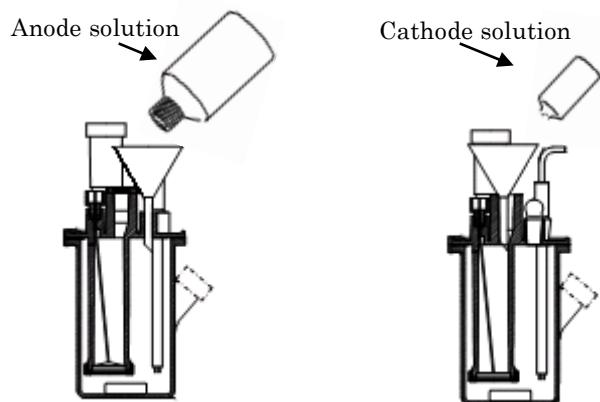


Fig.3.1. Preparation of the reagents.

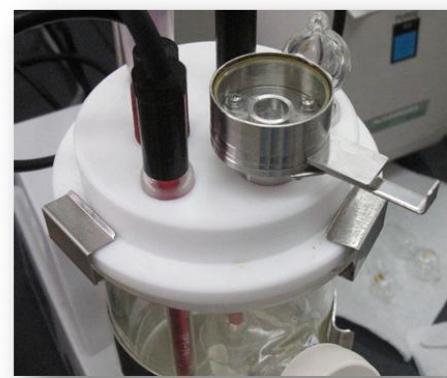


Fig.3.2 Setting of ultra-micro solid sampler

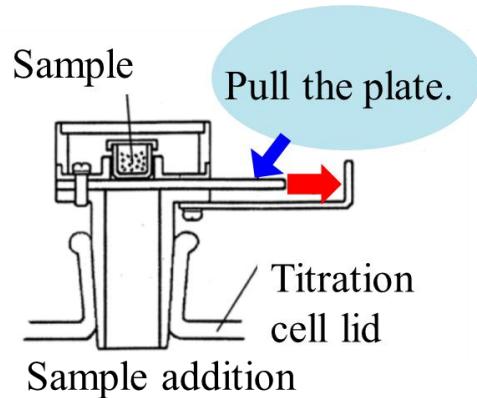
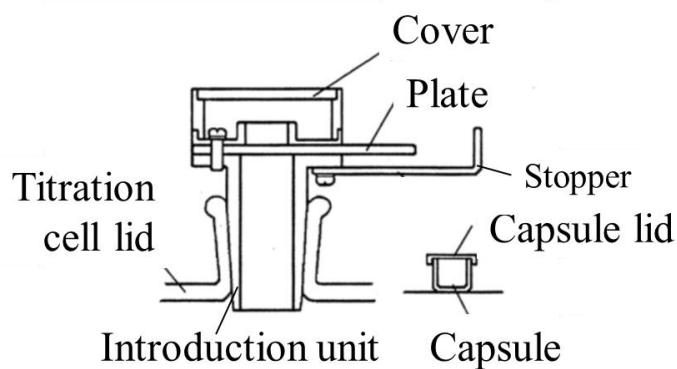



Fig.3.3. Introduction of sample.

4. Parameters and results

Table 4.1. Parameters

Condition File	
Cal Mode	0:Sample weight (net) X=(H ₂ O-BLANK)/SIZE
Interval Time	30 sec
Current	MEDIUM
S.Timer	10 min
Blank Value	0 ug
Unit Mode	AUTO
Auto Interval	0 g
Minimum Count	5 ug
Back Ground	ON
Sample Size Input	Every Time
Cell Type	Standard

Table 4.2. Results of water content measurement in drugs and medicines

Sample	Sample size (mg)	Water (μg)	Water content (%)	Statistics result			Remark
				Avg.	SD	RSD	
Thiamine Chloride	30.1	1143.8	3.8000 %	Avg.	3.8649 %	1.58 %	Insoluble
Hydrochloride	30.4	1177.5	3.8734 %	SD	0.0611 %		
	30.5	1196.0	3.9213 %	RSD			
Folic acid	10.2	798.8	7.9880 %	Avg.	7.9540 %	0.66 %	Insoluble
	10.1	805.1	7.8931 %	SD	0.0529 %		
	10.0	798.1	7.9810 %	RSD			

5. Note

- (1) Sampler, capsule and the other tools should be dried up well before use.
- (2) After adding 10 to 20 capsules to the cell, open the cell lid and remove the capsule. Capsules can be washed and reused.
- (3) To measure 100 μg or less water detection, make sure stability of blanking. Low and stable background value is important factor for trace level of water measurement.

Keywords : Karl Fischer, Coulometric titration, Pharmacopeia, Solid