

Amino acid analysis in tomato puree (Physiological Fluid Analysis Method / GABA short analysis method)

Tomato is known as a vegetable containing many amino acids including aspartic acid and glutamic acid. In recent years, it has also attracted attention because it contains a large amount of γ -Amino-n-butyric acid (GABA), which is a functional food ingredient. Simultaneous analysis (Physiological Fluid Analysis Method) can simultaneously analyze 40 free amino acids including GABA, but GABA short analysis method, which has a short analysis time, is effective for measuring only GABA.

In this report, we will introduce an example of measuring commercially available tomato puree by Physiological Fluid Analysis Method and GABA short analysis method using LA8080 HIGH SPEED AMINO ACID ANALYZER (AminoSAAYA).

Since these analytical methods can be used together without changing the eluents and columns, they can be easily selected according to the amino acid to be analyzed in the sample, and the total measurement time can be shortened.

We also compared the GABA quantification results of the tomato puree sample by Physiological Fluid Analysis Method and GABA short analysis method.

LA8080 HIGH SPEED AMINO ACID ANALYZER (AminoSAAYA)

Analytical Conditions, Sample Preparation

Table 1. Analytical Conditions for Physiological Fluid
Analysis Method and GABA short analysis method

	//2000DE 4.0	
Column	#2622PF 4.6 mm I.D. × 60 mm	
Ammonia filter column	#2650L 4.6 mm I.D. × 40 mm	
Eluent	MCI buffer PF-Kit (*)	
Flow rate	0.35~0.40 mL/min	
Column temperature	30~90 °C	
Reaction reagent	Ninhydrin Reagent Wako Amino Acid Automated Analyzer Kit (ID code: For Hitachi) (*)	
Reaction reagent flow rate	0.30~0.35 mL/min	
Reaction temperature	135 °C	
Detection wavelength	VIS 440 nm, 570 nm	
Injection volume	20 μL	

(*) FUJIFILM Wako Pure Chemical Corporation

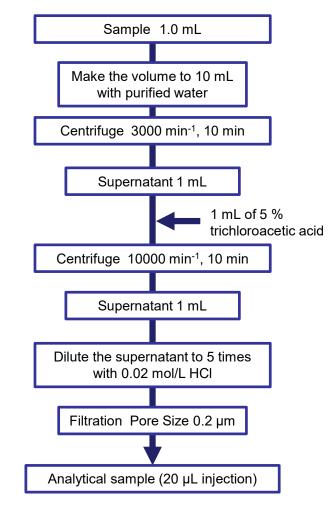


Fig.1 Preparation Method

Analysis of tomato puree by Physiological fluid analysis method

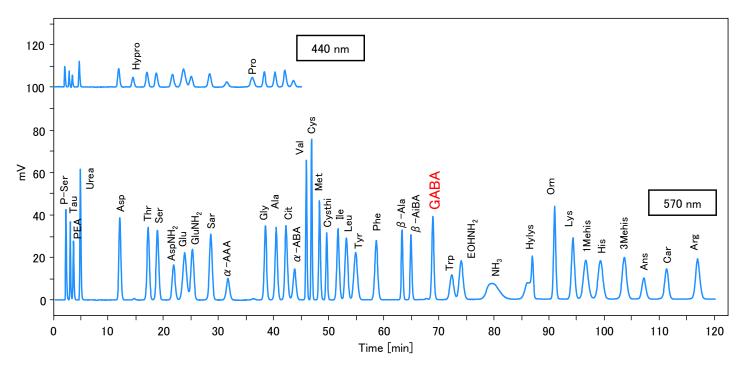


Fig.2 Analysis of Amino Acid Standard Solution (Physiological Fluid Analysis Method)

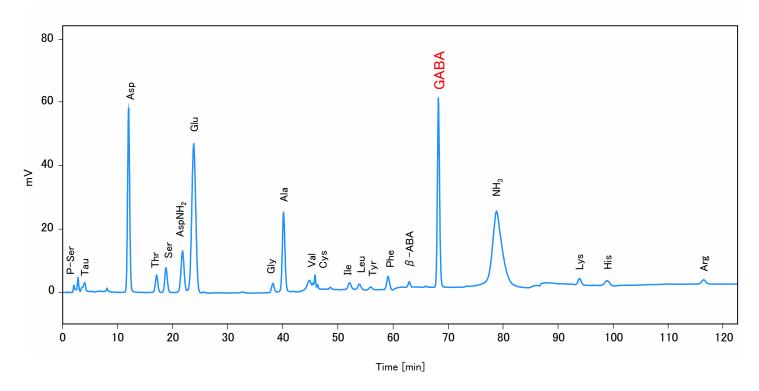


Fig.3 Analysis of tomato puree (Physiological Fluid Analysis Method)

Analysis of tomato puree by GABA short analysis method

- ✓ It was found that tomatoes contain a lot of GABA.
- ✓ It was confirmed that there is no big difference between the GABA quantitative values of Physiological Fluid Analysis Method and the GABA shortened analysis method.

Fig.4 Analysis of Amino Acid Standard Solution (GABA short analysis method)

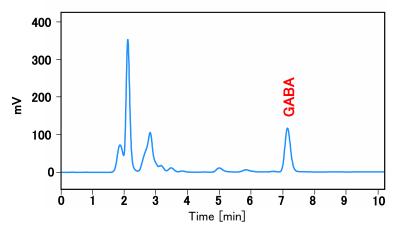


Fig.5 Analysis of tomato puree (GABA short analysis method)

Table 2. Comparison of GABA quantitative values

Analysis method	Concentration (mmol/L)
Physiological Fluid Analysis Method	0.208
GABA short analysis method	0.211

Difference in quantitative values: 1.47%

List of Amino Acids

Abbrev.	Amino acid	Molecular	Std. concentration
		weight	(nmol/ 20 μL)
P–Ser	Phosphoserine	185.1	1
Tau	Taurine	125.2	1
PEA	Phosphoethanolamine	141.1	1
Urea	Urea	60.1	40
Asp	Aspartic acid	133.1	2
Hypro	Hydroxyproline	131.1	2
Thr	Threonine	119.1	2
Ser	Serine	105.1	2
AspNH ₂	Asparagine	132.1	2
Glu	Glutamic acid	147.1	2
GluNH ₂	Glutamine	146.2	2
Sar	Sarcosine	89.1	5
α-ΑΑΑ	α–Aminoadipic acid	161.2	1
Pro	Proline	115.1	2
Gly	Glycine	75.1	2
Ala	Alanine	89.1	2
Cit	Citrulline	175.2	2
α–ABA	α–Amino–n–butyric acid	103.1	1
Val	Valine	117.1	2
Cys	Cystine	240.3	2
Met	Methionine	149.2	2
Cysthi	Cystathionine	222.3	1
lle	Isoleucine	131.2	2
Leu	Leucine	131.2	2
Tyr	Tyrosine	181.2	2
Phe	Phenylalanine	165.2	2
β–Ala	β-Alanine	89.1	2
β–AiBA	β–Aminoisobutyric acid	103.1	2
GABA	γ–Amino–n–butyric acid	103.1	2
Trp	Tryptophan	204.1	2
EOHNH ₂	Ethanolamine	61.1	2
NH ₃	Ammonia	17.0	2
Hylys	Hydroxylysine	162.2	2
Orn	Ornithine	132.2	2
Lys	Lysine	146.2	2
1Mehis	1-Methylhistidine	169.2	2
His	Histidine	155.2	2
3Mehis	3–Methylhistidine	169.2	2
Ans	Anserine	240.3	2
Car	Carnosine	226.2	2
Arg	Arginine	174.2	2

NOTE: All data on this report are examples of measurement; the individual values are NOT guaranteed.