# Analysis of protein-constituting amino acids in Grains (Protein Hydrolyzate Analysis Method)

Grains are divided into staple grains, miscellaneous grains, pulses, and pseudocereals. Staple grains refer to the staple crops rice, wheat, and corn, while miscellaneous grains are a general term for the small caryopsis-bearing crops of the Gramineae family, such as barnyard millet, foxtail millet, and millet. Miscellaneous grains were once an important staple crop in Japan, but when rice production increased during the economic growth period, consumption and production of miscellaneous grains decreased. However, due to the growing health consciousness in recent years, the high nutritional value of miscellaneous grains has been reevaluated, and they are now used as a health food. Miscellaneous grains are also important staple crops, mainly in arid regions where it is difficult to grow rice and are mainly produced and consumed in large quantities in India and African countries.

This report introduces examples of protein-constituting amino acid analysis of staple grain (Non-glutinous rice) and three types of miscellaneous grains (Foxtail millet, Pilled millet, and Japanese barnyard millet). The analysis was performed using LA8080 HIGH SPEED AMINO ACID ANALYZER (AminoSAAYA) with Protein Hydrolyzate Analysis Method.

The results showed that miscellaneous grains are highly nutritious foods because they contains more protein-constituting amino acids than non-glutinous rice. Knowing the amino acid content of nutritional components through amino acid analysis is useful for the nutritional evaluation of foods.



LA8080 HIGH SPEED AMINO ACID ANALYZER (AminoSAAYA)

#### Analysis of Amino Acid Standard Solution

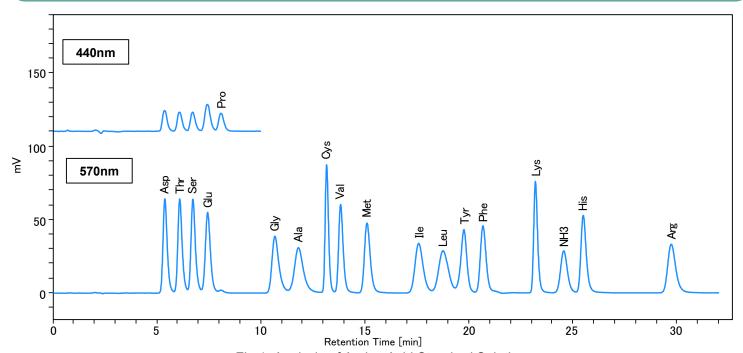



Fig.1 Analysis of Amino Acid Standard Solution

**Table 1 Analytical Conditions** 

| Column                | #2622PH 4.6 mm I.D. × 60 mm | Reaction reagent           | Ninhydrin Coloring Solution Kit for HITACHI (*) |
|-----------------------|-----------------------------|----------------------------|-------------------------------------------------|
| Guard column          | #2619F 4.0 mm I.D. × 5 mm   | Reaction reagent flow rate | 0.35 mL/min                                     |
| Ammonia filter column | #2650L 4.6 mm I.D. × 40 mm  | Reaction temperature       | 135 ℃                                           |
| Eluent                | MCI BUFFER™ PH Kit (*)      | Detection wavelength       | VIS 440 nm , 570 nm                             |
| Flow rate             | 0.40 mL/min                 | Injection volume           | 20 μL                                           |
| Column                | 57 °C                       | (*)                        | FUJIFILM Wako Pure Chemical Corporation         |

The standard solution is Amino Acids Mixture Standard Solution,

# Analysis of samples

- ✓ Miscellaneous grains contains more protein-constituting amino acids than Non-glutinous rice.
- ✓ Using Amino Acid Analyzer makes it possible to evaluate nutritional value with high precision.

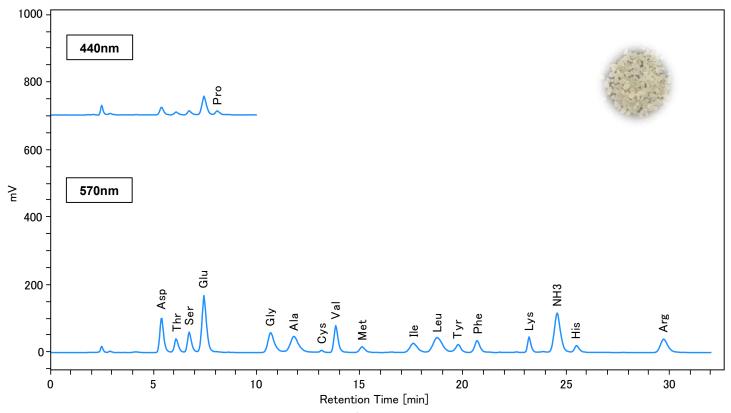



Fig.2 Analysis of Non-glutinous rice sample

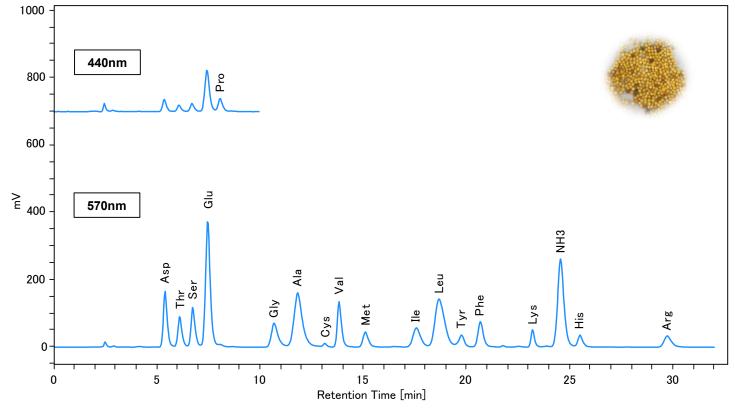



Fig.3 Analysis Foxtail millet sample

# Analysis of samples

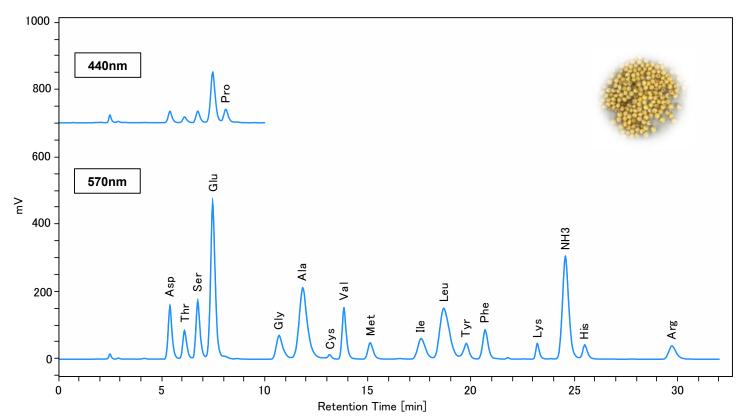



Fig.4 Analysis of Pilled millet sample

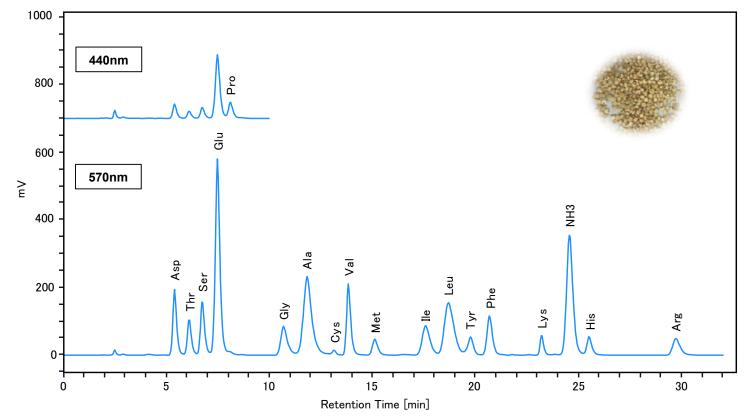



Fig.5 Analysis Japanese barnyard millet sample

## Comparison of amino acid content

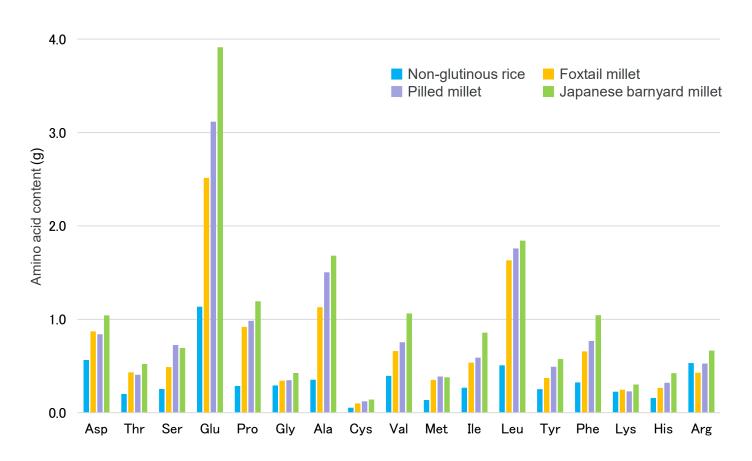
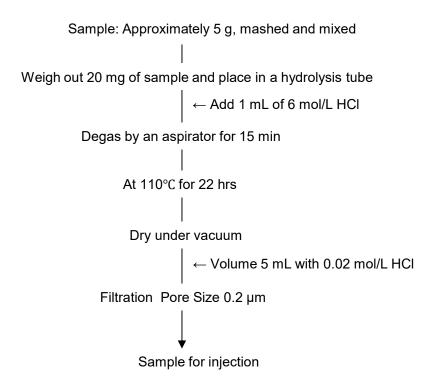




Fig.6 Protein-constituting amino acids per 100 g sample (g)

## Sample Preparation





# List of Amino Acids

| Abbrev. | obrev. Amino acid Molecula weight |       | Std. concentration (nmol/ 20 µL) |  |
|---------|-----------------------------------|-------|----------------------------------|--|
| Asp     | Aspartic acid                     | 133.1 | 2                                |  |
| Thr     | Threonine                         | 119.1 | 2                                |  |
| Ser     | Serine                            | 105.1 | 2                                |  |
| Glu     | Glutamic acid                     | 147.1 | 2                                |  |
| Pro     | Proline                           | 115.1 | 2                                |  |
| Gly     | Glycine                           | 75.1  | 2                                |  |
| Ala     | Alanine                           | 89.1  | 2                                |  |
| Cys     | Cystine                           | 240.3 | 2                                |  |
| Val     | Valine                            | 117.1 | 2                                |  |
| Met     | Methionine                        | 149.2 | 2                                |  |
| Ile     | Isoleucine                        | 131.2 | 2                                |  |
| Leu     | Leucine                           | 131.2 | 2                                |  |
| Tyr     | Tyrosine                          | 181.2 | 2                                |  |
| Phe     | Phenylalanine                     | 165.2 | 2                                |  |
| Lys     | Lysine                            | 146.2 | 2                                |  |
| NH3     | Ammonia                           | 17.0  | 2                                |  |
| His     | Histidine                         | 155.2 | 2                                |  |
| Arg     | Arginine                          | 174.2 | 2                                |  |

These data are an example of measurement; the individual vales can not be guaranteed. Specifications in this catalog are subject to change with or without notice, as Hitachi High-Tech Analysis Corporation continues to develop the latest technologies and products for our customers.