SHEET NO. 56

SUBJECT:

PHYSIOLOGICAL FLUID ANALYSIS OF BEER

INSTRUMENT:

HITACHI MODEL L-8800 AMINO ACID ANALYZER

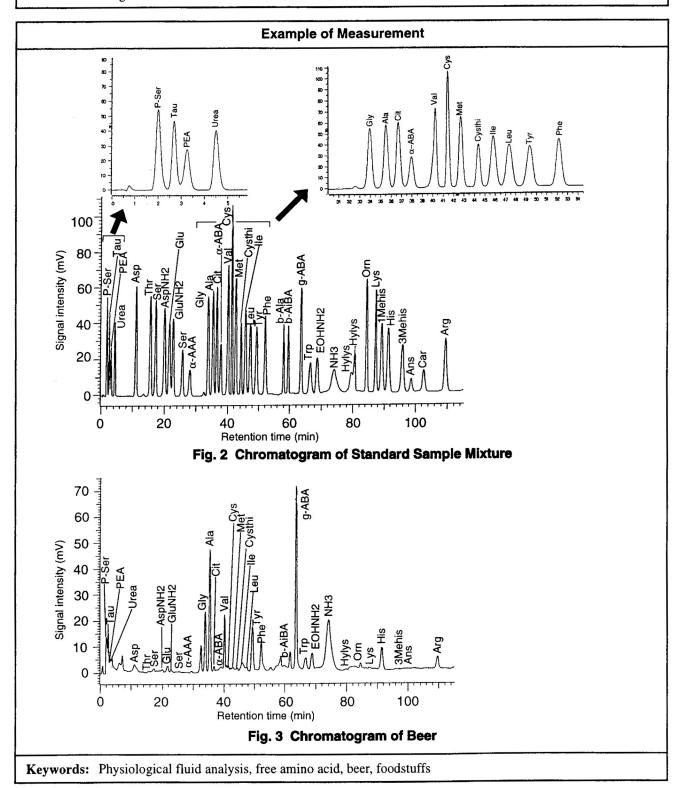
TABLE OF CONTENTS

Introduction 1	
Physiological Fluid Analysis	
(Standard Specifications)	
Physiological Fluid Analysis	
(High Resolution Specifications)	
Analytical Conditions 4	

Introduction

Amino acid analysis includes analyses of the amino acids as components of protein and physiological fluid analysis, such as analysis of free amino acids deriving from an organism. Of those analyses, the physiological fluid analysis requires a higher separability, because it involves a number

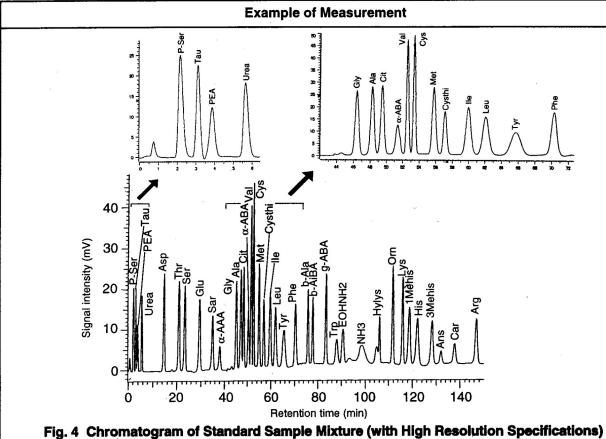
of analytes. Compared here are the results of analyses with a standard column $(4.6 \times 60 \text{ mm})$ and a high resolution column $(4.6 \times 80 \text{ mm})$, selecting beer as a fermented food sample which depends on the amino acid analysis for quality control. For usual quality control, the standard column is adequate. However, when analysts focus attention selectively on taurine (Tau) or the like constituents which have a short retention time, a higher quantitative accuracy is ensured by using the high resolution column. The Model L-8800 Amino Acid Analyzer has succeeded in high sensitivity and high resolution analysis of each constituent through a faster ninhydrin reaction achieved by adopting a new method of reaction in a reaction column $(4.6 \times 40 \text{ mm})$ instead of the conventional method of reaction in a reaction coil (0.25 mm I.D. × 7 m). As a result, peak broadening of each constituent can now be reduced by about 40% so that excellent chromatograms are available.


Fig. 1 Reaction of Ninhydrin

Physiological Fluid Analysis (Standard Specifications)

Sheet No.	Measured Substance	Field	
56-1	Beer	Foodstuffs	

Features


- Peaks from Gly to Phe are adequately separated.
- The entire range can be covered with the standard column of 4.6×60 mm.

Physiological Fluid Analysis (High Resolution Specifications)

Sheet No.	Measured Substance	Field
56-2	Beer	Foodstuffs

- Peak separation is excellent around taurine (Tau) due to the high resolution column.
- High resolution is ensured over the entire range of measurement.

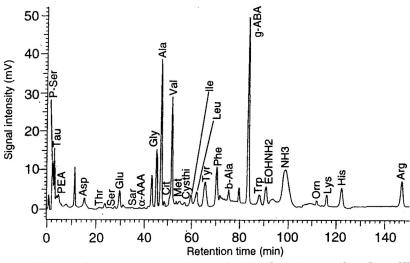


Fig. 5 Chromatogram of Beer (with High Resolution Specifications)

Keywords: Physiological fluid analysis, free amino acid, beer, foodstuffs

Analytical Conditions

(1) Standard specifications

Column : $#2622 (4.6 \times 60 \text{ mm})$

Ammonia filter column : $#2650L (4.6 \times 40 \text{ mm})$

Pump flow rate : P1; 0.35 mL/min

P2; 0.30 mL/min

Reaction method : Reaction column

 $(4.6 \times 40 \text{ mm})$

(2) High resolution specifications

Column : $\#2622 (4.6 \times 80 \text{ mm})$ Ammonia filter column : $\#2650L (4.6 \times 60 \text{ mm})$

Pump flow rate : P1; 0.35 mL/min

P2; 0.30 mL/min

Reaction method : Reaction column

 $(4.6 \times 40 \text{ mm})$

Gradient program

Time (min) %B1	%B2	%B3	%B4	%B5	Temp. (°C)
0.0	100	0	0	0	0	38
2.0	100	0	0	0	0	32
19.0	100	0	0	0	0	
19.1	80	20	0	0	0	60
31.5	60	40	0	0	0	
31.6	10	90	0	0	0	
36.5	10	90	0	0	0	40
42.5	10	90	0	0	0	
42.6	0	100	0	0	0	
45.5						70
50.5	0	100	0	0	0	70
50.6	0	0	100	0	0	
68.4	0	0	100	0	0	45
69.5	0	0	100	0	0	
69.6	60	0	0	40	0	
74.0	60	0	0	40	0	
74.1	0	0	0	100	0	
86.0	0	0	0	100	0	
86.1	0	20	0	80	0	
92.5	0	20	0	80	0	70
99.5	0	20	0	80	0	
99.6	0	0	0	100	0	
109.5	0	0	0	100	. 0	
109.6	0	0	0	0	100	
118.5	0	0	0	0	100	
118.6	100	0	0	0	0	
125.0	100	0	0	0	0	38
148.0	100	0	0	0	0	

Gradient program

Time (min)	%B1	%B2	%B3	%B4	%B5	Temp. (°C)
0.0	100	0	0	0	0	38
3.0	100	0	0	0	0	30
25.4	100	0	0	0	0	
25.5	80	20	0	0	0	60
40.5	60	40	0	0	0	
40.6	10	90	0	0	0	
48.6	10	90	0	0	0	40
58.0	10	90	. 0	0	0	
58.1	0	100	0	0	0	
64.5	0	100	0	0	0	70
64.6	0	0	100	0	0	
91.0	0	0	100	0	0	45
92.9	0	0	100	0	0	
93.0	60	0	0	40	0	
98.5	60	0	0	40	0	
98.6	0	0	0	100	0	
114.5	0	0	0	100	0	
114.6	0	20	0	80	0	
123.0	. 0	20	0	80	0	70
132.9	0	20	0	80	0	
133.0	0	0	0	100	0	
146.0	0	0	0	100	0	
146.1	0	0	0	0	100	
158.0	0	0	0	0	100	
158.1	100	0	0	0	0	
167.0	100	0	0	0	0	38
200.0	100	0	0	0	0	

Author:

LC Group, Techno Research Laboratory, Hitachi Instruments Engineering, Co., Ltd.

HITACHI

•		
	,	