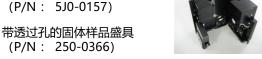
Deterioration analysis of the edible oil by the Multivariate Analysis using 3-D Fluorescence Spectra Measurement (Fluorescence Fingerprint, EEM)

概要

日立F-7000型荧光分光光度计具有最高等级的3D荧光光谱吸收的测定处理能力(本次分析条件约有4个),广泛应用于研究开发和质量管理等领域。

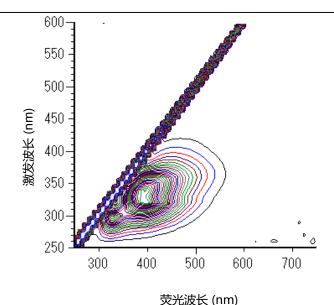

利用该设备,通过测定样品特有的3D荧光光谱(荧光指纹),依据其大量的数据进行多变量分析,可以判别农作物的种类和等级,检测其中的特异成分等。

在此通过测定不同加热时间的食用油的3D荧光光谱,分析由于加热引起的变化。

样品 : 食用油

加热时间 : 30分钟、60分钟、120分钟

加热温度 : 180℃ (P/N : 250-0366)



分析条件

自动过滤附属装置

装置 : F-7000 激发侧狭缝 : 5 nm 光电倍增管电压: 400 V : 250 ~ 600 nm 荧光侧狭缝 2000 激发波长范围 : 5 nm 满量程 荧光波长范围 : 250 ~ 750 nm 反应 等高线间隔 : 25 自动

扫描速度 : 60000 nm 检测器 : R928F

0 min 30 0 600 1200

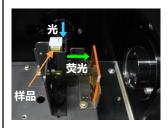
0 min, 30 min, 60 min 120 min 图2 样品的状态

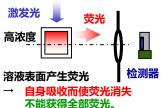
图1 食用油的荧光指纹图谱

图1所示为食用油的荧光指纹图谱。将样品装入抛弃式小容器(AS-ONE: 2-478-06-1961)中,固定于固体样品支架上。从3D荧光光谱测定结果可以确认,在激发波长300 nm、荧光波长320 nm附近以及激发波长340 nm、荧光波长400 nm附近出现荧光指纹。

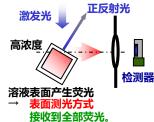
KEY '	WΟ	RI	วร
-------	----	----	----

生物・医学・食品・制药、食品、


油、劣化、荧光指纹、多变量分析、EEM、主成分分析、优劣判定、判别分析、 3D荧光光谱、


Edible Oil, Food, 3D Fluorescence Spectrum, FL, F-7000

荧光分光光度计 FL


Deterioration analysis of the edible oil by the Multivariate Analysis using 3-D Fluorescence Spectra Measurement (Fluorescence Fingerprint, EEM)

样品放置方法

对于高浓度(高吸光度)的样品,采用10 mm方形容器进行测定时,在溶液表面产生荧光,激发光并未达到溶液内部。 此外,由于将自身荧光吸收的所谓自吸现象,原本应有的短波侧的荧光会消失。对于溶液无法稀释等需要在高 浓度下进行的样品测定,则利用固体样品支架以表面测光方式测定荧光。 这样,用10 mm方形容器测定溶液表面方法无法完成的荧光测定目标即可实现。

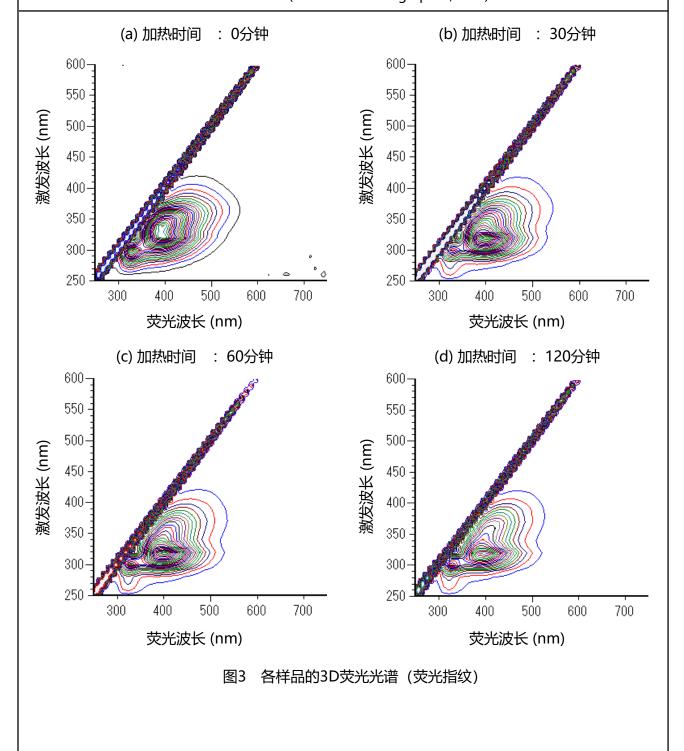
*详情请参照FL130001。

食用油的荧光指纹 波长信息

表1 食用油的荧光指纹 波长信息示例之一1)

Fluorophore	EX λ _{max} (nm)	EM λ _{max} (nm)	Group		
oxidation product	320	440	Oxide		
Vitamin B₂ (Riboflavin)	270, 382, 448	518	Vitamin		
Vitamin E (α-Tocopherol)	298	298 326			
Chlorophyll A	428	663	Dorobrio		
Hematoporphyrin	396	614	Porphrin		

表1为从食用油中检测出的自身荧光波长信息的一个示例。

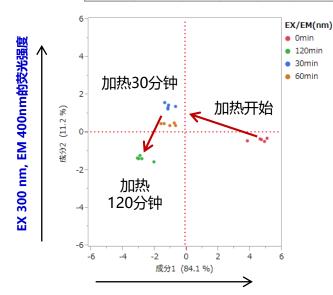

※波长信息仅用作参考。样品状态和装置个体差别,都会造成观测波长的差异。

1) Jakob Christensen, Lars Nørgaard, Rasmus Bro, and Søren Balling Engelsen., Multivariate Autofluorescence of Intact Food Systems, Chemical Reviews, Vol. 106, No. 6 (2006)

KEY WORDS 生物·医学·食品·制药、食品、 油、劣化、荧光指纹、多变量分析、EEM、主成分分析、优劣判定、判别分析、 3D荧光光谱、 Edible Oil, Food, 3D Fluorescence Spectrum, FL, F-7000

荧光分光光度计 FL

利用3D(三维)荧光光谱测定(荧光指纹)多变量解析法分析食用油的劣化情况 Deterioration analysis of the edible oil by the Multivariate Analysis using 3-D Fluorescence Spectra Measurement (Fluorescence Fingerprint, EEM)


KEY WORDS 生物·医学·食品·制药、食品、 油、劣化、荧光指纹、多变量分析、EEM、主成分分析、优劣判定、判别分析、 3D荧光光谱、 Edible Oil, Food, 3D Fluorescence Spectrum, FL, F-7000


荧光分光光度计 FL

Deterioration analysis of the edible oil by the Multivariate Analysis using 3-D Fluorescence Spectra Measurement (Fluorescence Fingerprint, EEM)

(a) 从3D荧光光谱中提取的数据组

4	•										
•	EX/EM(nm)	300/330	300/350	300/400	320/350	340/400	350/400	360/400	400/500	270/325	340/500
•	1 0min	476.5	349.4	333.3	272.8	702.2	622.5	469.5	49.79	89.42	103.5
•	2 Omin	487.4	359.9	355.2	282.7	718.4	647.8	492.1	57.17	95.84	110.2
	3 Omin	488.8	362.7	355	283.9	720.6	647.3	492.7	54.8	91.02	107
	4 0min	501.2	369.4	366.2	289.1	731.7	651.7	495	54.54	96.91	110.3
•	5 0min	495.7	365.3	359.3	284.8	711.6	635.2	483.6	53.38	95.91	106.9
•	6 30min	340.1	272.8	412.2	178	453.1	395.3	314.3	39.05	76.33	61.83
•	7 30min	334.8	267.2	404.1	179.7	467.8	407.8	324.6	38	68.87	63.83
•	8 30min	334.6	268.5	398.7	175.7	445.3	393.6	315.3	42.25	73.75	62.01
•	9 30min	335.8	272.7	415	179	460.2	410.7	332.2	46.37	74.4	63.86
	10 30min	329.4	264.9	399.6	175.7	453.8	401.3	323.2	44.29	69.43	63.18
•	11 60min	387.5	286.7	378.1	171.1	389.8	348	300.3	42.96	79.32	47.62
	12 60min	392.5	294.4	387.4	173	408.3	368	317.2	41.98	80.24	49.05
•	13 60min	398.3	291.3	387.9	172.8	395.3	352.3	303.8	44.23	82.58	48.4
•	14 60min	382.3	283.3	375.9	168.6	379.2	339.7	291.1	38.76	79.21	44.75
•	15 60min	383.9	284.6	372.7	167.9	378.8	332.8	284.7	39.81	73.36	46.08
•	16 120min	365.4	257.6	248.8	156	299.2	280.8	258.9	39.84	68.33	33.12
	17 120min	359.1	251.2	242.9	151.7	286.2	266.1	241.7	39.77	71.31	32.19
	18 120min	371	261.8	257.4	154.2	302	280.1	264.1	49.06	76.77	35.1
	19 120min	365.6	257.8	248.3	153.9	289.1	266.9	246.1	39.25	76.19	32.67
•	20 120min	363	253.4	242.5	151.4	286.9	265.6	245.6	39.73	71.42	32.06

EX 350 nm, EM 400 nm等的荧光强度

(b) 主成分点数的分布图

(c) 因子负荷量分布图

图4 各样品主成分分析判别示例*

提取3D荧光光谱的波峰波长、波谷波长等10项波长的荧光强度数据,汇集成(a)数据组。根据以上数据,得到(b)主成分分析结果。可以看到,加热一开始,主成分1的值也变小。随着加热时间的延续,主成分2的值也越来越小。从(c)因子负荷量分布图可知,主成分1对应的是350/400 nm等荧光强度的总和,主成分2,对应的是300/400 nm的荧光强度。

* JMP® 11 (SAS Institute Inc., Cary, NC, USA) 使用

KEY WORDS

生物・医学・食品・制药、食品、

油、劣化、荧光指纹、多变量分析、EEM、主成分分析、优劣判定、判别分析。 3D荧光光谱、

Edible Oil, Food, 3D Fluorescence Spectrum, FL, F-7000

荧光分光光度计 FL

表No. FL140002-04

日立高新技术公司

Deterioration analysis of the edible oil by the Multivariate Analysis using 3-D Fluorescence Spectra Measurement (Fluorescence Fingerprint, EEM)

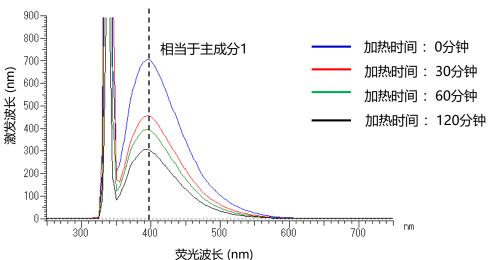


图5 激发波长350 nm处荧光光谱的重叠

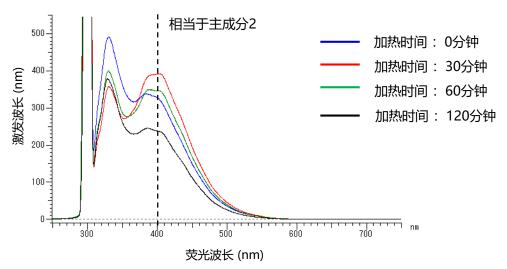


图6 激发波长300 nm处荧光光谱的重叠

主成分分析得到的主成分1,对应350/400 nm等荧光强度。在此得到激发波长350 nm的荧光光谱(图5)。从图中可见,随着加热时间的延长,荧光强度变低。

而另一方面,主成分2对应 300/400 nm等荧光强度。图6为激发波长300 nm的荧光光谱。从图中可见,随着加热时间的延长,在400 nm处,荧光强度有增加,但随后,荧光强度变低。

主成分分析法,就是计算出主成分的点数,用分布图表示出来,这样从视觉上更容易对它们的特点进行判断。

KEY WORDS 生物·医学·1

生物・医学・食品・制药、食品、

油、劣化、荧光指纹、多变量分析、EEM、主成分分析、优劣判定、判别分析。 3D荧光光谱、

Edible Oil, Food, 3D Fluorescence Spectrum, FL, F-7000

荧光分光光度计 FL