

Phase Transition Behavior of Organic Thin Film Observed High Sensitive DSC

Masayuki Iwasa¹, Nobuaki Okubo¹, Kana Emoto² and Hirohisa Yoshida²

¹ SII NanoTechnology Inc., ² Tokyo Metropolitan University

Introduction

With decreasing the size of material, the structure and the molecular mobility of materials are influenced by the material-gas interface (surface) and the material-substrate interface (interface) due to the decrease of surface/volume ratio. The glass transition of polymer-gas surface is lower than that of bulk polymer, and the molecular mobility of polymer-solid substrate interface is expected to be lower than that in bulk polymer due to the attractive interaction between polymer and substrate surface. In this study, the phase transitions of organic thin films with thickness less than 1 µm were investigated as a function of thickness.

Experiment

Sample

Poly(ethylene oxide) PEO : CH₃(OCH₂CH₂)_mCH₃
 m = 114, 272, and 454, mono-dispersed

Preparations

- Toluene solution of PEO, 0.1 to 1.0 wt%
- Solvent casting, 5 to 10 μL on aluminum open pan

Experiments

- **DSC**: X-DSC7000 (SII NanoTechnology) Temperature: 290 → 350 → 290 → 350 K Scanning Rate: 5 K/min
- AFM : E-sweep (SII NanoTechnology)
 Dynamic force mode
 Cantilever

Spring constant : 40 N/m Resonance frequency : 310 kHz

Results

Conclusion

- Melting temperature decreased with decreasing thickness. In the thin film with 1 μm thickness, two types of crystal existed.
- Crystallization process delayed by the interaction between PEO and the substrate surface.
- The effect of molecular weight on the retardation of nucleation process was observed.