Application Brief

☎日立仪器(上海)有限公司

Hitachi Instruments (Shanghai) Co., Ltd.

上海浦东新区张江高科技园区碧波路 690 号 2 号楼 102 室(201-203) TEL: (86)-21-5027-3533 FAX: (86)-21-5027-3733 http://www.hitachi-hitec-science.cn

SEA no.5

亚铅矿石分析实例

1991.12

1. 前言

精炼矿石的场合,对各个冶炼阶段中所含元素的掌握是相当重要的。但是,象原子吸光分析法和 ICP 发光光谱分析法这样的湿式分析,需要前期处理时间。在定量主要成分的时候(比如:亚铅矿石中的亚铅等),由于稀释倍率的上升所以想达到精确的分析是比较困难的。

使用SEA2010机型,就不需要前期麻烦的处理手续,实现短时间精确。特别是如果使用1标准基本参数法的话,因为是用一个标准样品,同时对十几个元素进行补正,所以对矿石这种含有成分种类比较多的样品是非常有效的。

2. 分析条件

照射直径	3 mm
管电压	50 K V
目标	Rh
测试环境	真空环境
测定时间	300秒
前期处理	粉碎混合后,用油压成型机压制成锭剂型

3. 分析样品

亚铅矿石(亚铅精矿,亚铅烧矿)

4. 定量方法

1标准基本参数法(1标准理论演算法)

5. 分析结果

5-1 亚铅精矿

亚铅精矿的分析结果如表1所示。

Application Brief

亚铅精矿是精炼前的亚铅矿石。因为亚铅中主要含有的是硫化物,所以S的浓度就很高。

这个阶段重要的是矿石中含Zn的程度如何?如表1,测定矿石中Zn浓度能够控制在不到±2%的误差范围内。

表1 亚铅精矿分析结果

(单位: %)

元素	分析方法	方法 亚铅精矿1 亚铅精矿2 亚铅		亚铅精矿3	亚铅精矿4	
Zn	化学分析	56. 66	56. 53	49. 65	50. 74	
ΔΠ	SEA	56. 46	55. 03	51.66	51. 07	
S	化学分析	32. 31	31. 36	33. 58	31. 76	
	SEA	33. 95	33. 32	35. 02	32. 86	
Fe	化学分析	5. 64	4. 22	8. 35	8. 94	
ге	SEA	6. 18	4. 57	7. 79	9. 71	
Pb	化学分析	1.04	2. 13	1. 98	2. 74	
PD	SEA	1. 18	2. 78	2. 29	3. 13	
SiO2	化学分析	1. 14	0.81	1.61	2. 57	
3102	SEA	0. 914	0.702	0.802	1.58	
Cu	化学分析	0.40	1. 25	1.81	0. 25	
	SEA	0. 43	1.05	1. 35	0. 26	
CaO	化学分析	0.07	0. 67	0.38	0.35	
CaO	SEA	0.009	0. 790	0.490	0. 590	
Cd	化学分析	0. 257	0. 337	0. 228	0. 169	
	SEA	0. 207	0. 365	0. 261	0. 167	
As	化学分析	0. 230	0.048	0.043	0. 197	
	SEA	0. 295	0. 166	0. 147	0. 322	
Mn	化学分析					
	SEA	0. 198	1. 13	0.075	0. 069	
Ti	化学分析					
	SEA	0.074	0.082	0. 103	0. 111	
Sn.	化学分析					
Sn	SEA	0. 097	0.009	0.009	0. 132	

Application Brief

5-2 亚铅烧矿

亚铅烧矿的分析结果如表2所示。

亚铅烧矿是亚铅精矿和焦炭等一同受高热的氧化物。目的是把硫化物氧化,除掉S。

因此,在这个阶段里和Zn的浓度一样S的浓度也很重要。所以有必要对S的浓度进行确认。如表2 所列出的是能够进行正确定量的Zn和S的值。

另外,分析这个样品的时候,各个成分是作为氧化物进行定量计算的,然后再换算成金属浓度。因此,下表中各成分深度合计没有100X,所以请注意!

表2 亚铅烧矿分析结果

(单位:%)

次2 亚山州,为初州水						
元素	分析方法	亚铅精矿1 亚铅精矿2		亚铅精矿3		
Zn	化学分析	65. 4	62. 1	63. 1		
	SEA	66. 10	62. 62	64. 06		
S	化学分析	1. 42	2. 46	2. 58		
	SEA	1.70	2. 62	2.74		
Fe	化学分析	6.89	7. 38	5. 66		
	SEA	6. 64	7. 35	5. 44		
Pb	化学分析	1. 20	1.60	1. 56		
	SEA	1.31	1.62	1.65		
SiO2	化学分析	1. 22	1. 37	1. 38		
	SEA	0.408	0. 488	0.724		
Cu	化学分析		0. 42	0.67		
	SEA	0.749	0. 519	0.774		
CaO	化学分析	0. 17	1.04	0. 98		
	SEA	0. 152	1. 28	1. 26		
7	化学分析	0. 297	0. 321	0.320		
Cd	SEA	0.306	0. 302	0.341		
As	化学分析	0. 226	0. 141	0. 194		
AS	SEA	0. 215	0. 145	0. 184		
MnO	化学分析					
	SEA	0. 225	0. 184	0. 171		

TiO2	化学分析			
	SEA	0.026	0. 013	0.000
SnO	化学分析			
	SEA	0. 141	0. 062	0. 083

6. 简单反复精度

对亚铅精矿1样品进行30次的反复分析,讨论简单反复精度。其结果如表3所示。

表3 亚铅精矿简单反复精度

元素	平均 (%)	σ (%)	C V 値 (%)	最大(%)	最小(%)	范围 (%)
Zn	56. 80	0.312	0. 55	57. 59	56. 49	1. 10
S	33. 63	0. 267	0. 79	33. 99	33. 00	0. 99
Fe	5. 89	0. 0258	0. 44	5. 95	5. 87	0. 08
Pb	1.64	0. 036	2. 21	1. 69	1.57	0. 12
Si	0. 783	0. 0695	8.88	0.908	0.664	0. 244
Cu	0.389	0. 0180	4.63	0. 432	0.365	0.067
Ca	0.075	0. 0314	41.84	0. 125	0.036	0. 089
Cd	0. 258	0. 0170	6. 56	0. 286	0. 230	0.056
As	0. 203	0. 0207	10. 21	0. 238	0. 176	0.062
Mn	0. 173	0. 0174	10. 05	0. 201	0. 138	0. 063
Ti	0.081	0. 0187	23. 07	0. 113	0.061	0. 052
Sn	0.080	0.0071	8. 96	0.091	0.069	0.022

CV値= (σ/平均)×100

含有1%以上成分的CV值,全部未达到3%的元素表示有良好的再现性。特别是作为主要成分的Zn, S和Fe能够取得CV值不到1%的高精度。

Si, Ca, Ti, Mn, As和Sn的CV值是提高了, 但是因为这些浓度低, 这些成分也会长时间的测定中分散变小。

7. 总结

使用这样的SEA2010 ,可以在几分钟内精确得对含有十几种元素的样品进行分析(主要成分CV值不到1%)。也能够对各种矿石,粘土矿物等进行有效得分析。