Hitachi High-Tech

HITACHI

Differential Pressure Transmitter (with temperature and pressure compensation) EDR-N7C

EDR-N7C is intelligent transmitter equipped with semiconductor sensers and micro processors.

STANDARD SPECIFICATIONS

Model EDR-N7C

Measuring range

Range Code	Measuring Span		Settable Range Limits	
800	Differential pressure 0.5 to 8kPa		-8≦LRV≦8kPa , -8≦URV≦8kPa	
	Pressure	0.2 to 5MPa abs.	$0 \leq LRV \leq 5MPa$ abs., $0 \leq URV \leq 5MPa$ abs.	
	Temperature	more than 50°C	-200≦LRV≦850℃, -200≦URV≦850℃	
8000	Differential pressure	2 to 80kPa	-80≦LRV≦80kPa , -80≦URV≦80kPa	
	Pressure	0.2 to 5MPa abs.	0≦LRV≦5MPa abs. , 0≦URV≦5MPa abs.	
	Temperature	more than 50°C	-200≦LRV≦850℃ , -200≦URV≦850℃	

Note) URV is the input differential pressure to give 100% output (20mA DC)

LRV is the input differential pressure to give 0% output (4mA DC)

Output	4 to 20mA DC
Power supply voltage	11.4 to 42.0V DC
Allowable load resistance	$600\Omega({\rm at}~24V~DC$ power supply voltage)
Communication line cor	ndition
Power supply voltage	16.7 to 42.0V DC
Load resistance	250 Q to 1.2k Q (Refer to Fig.1 for

load resistance	$250\Omega\mathrm{to}$
	the relati

16.7 to 42.0V DC 250 Ω to 1.2k Ω (Refer to Fig.1 for the relation between power supply voltage and load resistance)

Accuracy				
Range Code	Accuracy			
800	Differential pressure	$\pm 0.2\%$ Larger value either $\pm \{0.05+(0.15\times 1/X)\}\% \text{ or } 1.96\text{Pa}$	X : more than 1kPa X : less than 1kPa	
	Pressure	$\pm 0.1\%$ $\pm \{0.05+(0.05\times 1/X)\}\%$	X : more than 1MPa X : less than 1MPa	
	Temperature	$\pm 0.1\%$ Larger value either $\pm (0.1 \times 100/X)\%$ or 1°C	X : more than 100℃ X : less than 100℃	
8000	Differential pressure	$\pm 0.1\%$ $\pm \{0.05+(0.05\times 8/X)\}\%$	X : more than 8kPa X : less than 8kPa	
	Pressure	$\pm 0.1\%$ $\pm \{0.05+(0.05\times 1/X)\}\%$	X : more than 1MPa X : less than 1MPa	
	Temperature	$\pm 0.1\%$ Larger value either $\pm (0.1 \times 100/X)\%$ or 1°C	X : more than 100℃ X : less than 100℃	

Note 1)	Accuracy is percent value against X, and X is the largest value among
	absolute value of URV, LRV and measuring span. Unit is kPa.

Note 2) When square root output,

if zero cut is specified,

for output less than 1.1% : \pm (linear output accuracy \times 45) % for output 1.1 to 50% \quad : \pm (linear output accuracy \times

50/square root output %) %

for output more than 50% : same as linear output

- *Using the DCR type communicator, it is possible to select whether output under zero cutting point equals zero, or
- getting zero cutting point from arbitrary straight line.

if zero cut is not specified,

for output less than 20%, becomes the straight line between 0-20% point.

for output more than 20%, same as the above case that zero cut is specified

Accuracy of output after calculating temperature and pressure compensation

- $\pm [0.05\text{+}(accuracy of differential pressure input)^2 +(accuracy of pressure input)^2$
- +(accuracy of temperature input) $^{2}J^{1/2}$]%

Accuracy of output after calculating saturated steam pressure compensation

 \pm [0.05+{(accuracy of differential pressure input)²

+(accuracy of pressure input)^2 }^{1/2} +(0.3/ ρ }+(0.3/ ρ })]%

Calculation formula

[Assumed input]

Calculating temperature and pressure compensation

Calculating saturated steam pressure compensation

[Real input]

Calculating temperature and pressure compensation

Calculating saturated steam pressure compensation

- Note1: Calculation formula can be selected and set from
 - following five kinds by communicator
 - **(**]Without compensation
 - ⁽²⁾Temperature compensation
 - ③Pressure compensation
 - (4) Temperature and pressure compensation
 - ⁵Saturated steam pressure compensation
 - ΔP : Measured differential pressure (kPa)
 - T_I : Measured temperature (°C)
 - P₁ : Measured pressure (MPa abs.)
 - T_B : Base temperature for compensation (°C)
 - P_B : Base pressure for compensation (MPa abs.)
 - ρ_1 : Density in measurement pressure (kg/m³)
 - $\rho_{\rm H}$: Density in the value which added measurement differential pressure and measurement pressure (kg/m^3)

Ω

 $\rho_{\rm B}$: Density in base pressure (kg/m³)

Calculating saturated steam pressure compensation, $\rho_{\rm I}/\,\rho_{\rm B}$ and $\rho_{\rm H} / \rho_{\rm B}$ effective to double, It's become fixed with 2

it b become inter	with 2.	
emperature input	$\mathrm{Pt100}\Omega$	or JPt100

(three wires connection type)

```
Zero adjustment
                     Externally adjustable within \pm 100% of
```

Т

measurement span.

```
Accidental burn out
                      Can select any one among burn up, burn
                      down and without burn out.
Dead time
                      Approx. 0.4sec
Damping time constant
(Amplifier time constant)
                      communicator.
```

Adjustable from 0.2 to 102.4sec (0.1sec increment) electrically by the DCR

Time constant of sensor body

Range Code	Time Constant of Sensor Body (at 25°C)	
800	Approx. 0.7sec	
8000	Approx. 0.2sec	

- Transmitter time constant equals total sum of the above time constant of sensor body, damping setting time constant (amplifier time constant) and dead time.
- When pressure pulsation is expected, fixed electrical damper (about 1sec) shall be specified, at the same time we recommend that inner diameter ϕ 1 capillary tube (more than 1m length) is inserted.

Storage −40 to 85°C

- temperature limits
- **Operating humidity** 5 to 100%RH
- limits

Operating temperature limits

Ambient temperature limits

-20 to 85°C (see Fig.2)

Wetted parts temperature limits

-20 to 120°C

Working pressure	5MPa	abs.				
limits	Note)	When	used	under	negative	pressure,

refer to Fig.3 Less than 29.4m/s² continuous vibration

Site vibration Temperature effect (at -20 to 60°C)

Range	Tomporature Effect			
Code	Temperature Enect			
800	Zero shift	$\pm \{0.05+(0.45\times T/50)\}\%$	X : more than 3.2kPa	
		$\pm \{0.05+(0.25+0.2\times 3.2/X)\times T/50\}\%$	X : less than 3.2kPa	
	Overall shift	$\pm \{0.05+(0.75\times T/50)\}\%$	X : more than 3.2kPa	
		$\pm \{0.05+(0.45+0.3\times 3.2/X)\times T/50)\}\%$	X : less than 3.2kPa	
8000	Zero shift	$\pm \{0.05+(0.2\times T/50)\}\%$	X : more than 32kPa	
		$\pm \{0.05+(0.1+0.1\times 32/X)\times T/50\}\%$	X : less than 32kPa	
	Overall shift	$\pm \{0.05+(0.45\times T/50)\}\%$	X : more than 32kPa	
		$\pm \{0.05+(0.35+0.1\times 32/X)\times T/50)\}\%$	X : less than 32kPa	

Note) Temperature effect is percent value against X, X is the largest value among absolute value of URV,LRVand measuring span. Unit is kPa.

T is temperature variation width ($^{\circ}$ C).

CS·3253 - 976

Pressure effect (at 25°C)

Range Code	Pressure Effect		
800	Zero shift	\pm [0.05+(0.1×8/X×P/5)]%	
8000	Zero shift	\pm [0.05+(0.1×P/5)]%	X is more than 40kPa
		\pm [0.05+(0.1×40/X)×P/5]%	X is less than 40kPa
	Overall shift	\pm [0.05+(0.3+0.1×80/X)×P/5]%	

Note) Static pressure effect is percent value against X, X is the largest value among absolute value of URV, LRV and measuring span. Unit

connection

(with oval flange)

Overpressure effect	+0.5%	
	± 0.070	
(Zero shift)	(at maximum working pressure application)	
	(at maximum span)	
Material		
Diaphragm	Hastelloy C	
	(Diaphragm material shall be selected	
	considering corrosion resistance, hydrogen	
	transmission, etc.)	
Wetted parts other	SUS316	
than diaphragm		
Amplifier case	Aluminium alloy	
Mounting plate	SPCC (acid resistant coating)	
U bolt	SUS304	
Filled liquid	Silicone oil	
Process connection	Top connection $Rc1/4$ without oval flange	
Electrical connection	G1/2	
Check terminal	With output check terminal	
	(output voltage 40 to 200mV DC) $$	
Certifications	Degree of protection JIS C 0920 IP67	
Surge absorber	Built–in transmitter	
	Surge capacity : 1,000A (8/20 μ sec)	
	Impulse test voltage :15,000V (1.2/50 μ sec)	
Finish	Light gray amplifier case (acid resistant coating)	
Weight	Approx. 3.3kg	
Installation	On 2-inch pipe with U bolt.	
Accessories	2-inch pipe mounting bracket and U-bolt.	
	Zero adjustment magnet	

Structure

TIIS Ex explosion	Flameproof
proof type	Exdo II CT4
	Exdo II CT4X
	Note) X is for operating condition (as below)
	With meter : Abnormality code is
	displayed on meter to alert winking,
	so it is no need to build external alarm
	display system.
	Without meter : it is necessary to build
	external alarm display system, output
	exceeds 21mA
	Ambient temperature limits : -20 to $55^\circ\!\mathrm{C}$
	Wetted parts temperature limits: -20 to $100^\circ\!\mathrm{C}$

	Electrical connection	
	X-RCAC type press	ure resistant packing
	fixture must be used	for using pressure
	resistant oil filled ex	plosion proof type
	products (also appli	cable to use
	SXBM-16B made by	Shimada Electric
	Co. 1+d)	
	Co., Ltu.)	
FM explosion proof	Explosion proof CLI,DI	V I,GPS B,C&D
type	Dust-ignition proof CL	II∕III,GPS E,F&G
	Temperature Code T4	
	NEMA 4X	
	Ambient temperature li	mits : -40 to 60° C
	Wetted parts temperature	limits: -40 to 120°C
NEPSI explosion	Explosion proof Grade	Ex dII CT4
proof Approval	Ambient temperature r	ange −20~60°C
* **	Certificate No.GYI111	366
Indicator	Digital indicator 4.5 f	igures display
	(0 to 100% scale st)	andard)
	(Con act to ambitrary a	alla within the popula
		cale within the range
	of -17,500 to 17,500)	
	Scale plates various ur	nits to be sticked are
	supplied.	
	Indication reshuffling	of the differential
	pressure / pressure /	$\ensuremath{temperature}$ and the
	arbitrary scale setting	
	(range of - 1,750-1,	750) of the pressure
	are possible by the con	nmunicator, too.
	In the case of tem	perature indication,
	display "° " and, in t	the case of pressure
	indication distinguish	"P" next to numerical
	value (Refer to fig	A for the indication
	value. (Nelei to lig.	4 IOI the indication
Wetted parts	Diaphragm	Wetted Parts
matelials	SUS316L	SUS316
	SUS316L	SUS316L
	% Material shall be selected	ed considering corrosion
	resistance. In case hydr	ogen is present in
	measuring fluid, it is pos	ssible hydrogen
	transmission can be gen	erated through
	diaphragm. If corrosion	resistance is not so
	important, we recomme	nd SUS316L or SUS316
	with gold plating becaus	e hydrogen transmission
	welve of these meterial i	a relatively low (But it
	is difficult to provert be	dragon transmission
	is annount to prevent hy	
	completely even if diaph	iragm of 505316L with
	gold plating is applied).	
wetted parts finish	No oil finish or no-oil a	and no water finish
Process	Rc1/2, Rc1/4, 1/2NP	Г, 1/4NPT,

- 15A socket welding (socket screw-in type)
- **CS·3253 976**

Drain vent plug

36.6 V 1200 Load resistance [Ω] Inapplicable regio 600 Applicable region 250 0 0 16.7 24 42 11.4Power supply voltage [DC V] A minimum load resistance of $250\,\Omega$ shall be required to communicate by connecting to communicator.

Fig.2 Wetted parts temperature and allowable ambient temperature

Fig.3 Working pressure and process fluid temperature

Differential pressure display $(0.00 \sim 25.00 \text{kPa})$

245	B

Differential pressure display ($0.00 \sim 5.00$ MPa abs.)

AE D.

Temperature display

- Note 1) In the case of temperature indication, display and, in the case of pressure indication, distinguish "P" next to numerical value.
- Note 2) The bar graph displays the percentage of the span of the differential pressure by a 10% unit (round off one place).
- Note 3) The indication of the LCD is able to change setting of either / change indication to only differential pressure by a communicator.

Fig.4 Indication example

EXTERNAL CONNECTION

Notes:

- (1) Grounding shall be done according to class D grounding practice (grounding resistance less than 100 $\Omega)$
- (2) Grounding shall be done at one point either transmitter side or receiver instrument side, Give attention to avoid grounding at two points.
- (3) Grounding terminals on transmitter side are furnished inside of terminal box and outside of amplifier case. Either of them can be utilized.
- (4) Local indicator is not able to use.

●With EDB500M

DIMENSIONS (Unit : mm)

CODE TABLES

No.	1	2~9	Description
Mode1	Range code	Option	Description
EDR-N7C			Water - proof, without indicator, diaphragm material:Hastelloy C,
			wetted perts other than diaphragm:SUS316,
	800	top process connection Rc1/4 without oval flange,	
	000		Range of differential pressure:0 \sim Range code,
	8000		Range of pressure:0 \sim 5MPa abs.,Range of temperature:0 \sim 300 $^\circ$ C,
			Base pressure 0.5MPa abs., Base temperature:50 $^\circ\!\mathrm{C}_\circ$
			Select a necessary code alone among those in the optional code table below.

OPTION

No.	Item	Code	Description		
2	Adjustmment range	C()	Fill in () with adjustment range, unit mark, Fill in necessary items differential pressure, pressure and temperature in that order.		
		XC	JIS explosionproof standard approval : Exdo CT4X		
3	Certification	FM	FM explosionproof standard approval : CL, DIV1, GPS B, C&D		
		NEPSI	NEPSI explosionproof standard approval : Exd II CT4		
		М	With digital indicator		
4	Indicator	MJ()	With digital indicator and actual scale display Fill in () with scale and unit mark		
5	Wetted Parts	316L316	Diaphragm : SUS316L, Body wetted parts : SUS316		
5	materials	316L	Diaphragm : SUS316L, Body wetted parts : SUS316L		
6	No-oil finish	NL	No-oil finish		
0	NO OIT TIIIISII	NLW	No-oil and dehydrating finish		
		R2	Top connection with oval flange Rc1/2		
1		R4	Top connection with oval flange Rc1/4		
		N2	Top connection with oval flange 1/2 - 14NPT		
		N4	Top connection with oval flange 1/4 - 18NPT		
	Propose	S2	Top connection with oval flange 15A pipe insertion welding		
7	connections	BO	Bottom connection Rc1/4, without oval flange		
	connections	BR2	Bottom connection with oval flange Rc1/2		
		BR4	Bottom connection with oval flange Rc1/4		
		BN2	Bottom connection with oval flange 1/2 - 14 NPT		
		BN4	Bottom connection with oval flange 1/4 - 18 NPT		
		BS2	Bottom connection with oval flange 15A pipe insertion welding		
	Steam jacket			With steam jacket	
					ST
			less than 120°C. But less than 100°C for explosion proof type.		
8			With steam jacket, drain/vent plug for winterizing type		
		STP	* Steam temperature shall be set to get process fluid temperature		
				less than 120°C. But less than 100°C for explosion proof type.	
		Р	Drain/vent plug for winterizing type		
	9 Calculation formula	OFF	Without compensation (An initial value when there is not designation)		
9		TEMP()	Temperature compensation, Fill in () with base temperature in C		
		PRESS()	Pressure compensation, Fill in () with base pressure in MPa abs.		
		formula	prmula TP() remperature and pressure compensation, Fill in () with in order of base temperature in % and base pressure in MPa abs.	Temperature and pressure compensation, Fill in () with in order of base temperature in °C and base pressure in MPa abs.	
			amp ()	Saturated steam pressure compensation. Fill in () with base pressure	
		STEAM()	in MPa abs.		

Note) Please select the material of the diaphragm in consideration of corrosion resistance.

Hastelloy C might generate the hydrogen permeation by the galvanizing steel pipe piping and the water quality, etc., and cause the output shift and the transformation of the diaphragm.

Please select small SUS316L of the hydrogen permeation when there is no problem in corrosion resistance.

•Be sure to read the User's Manual to ensure correct, safe use.

•Some specifications and design are subject to change with or without notice for improvement of quality and performance.

Image: National ScienceImage: National ScienceImage: National ScienceImage: National ScienceInstructional Square Office Tower X,
1-8-10, Harumi, Chuo-Ku, Tokyo, 104-6031 Japan
Tel: +81-3-6758-2092 Fax: +81-3-5839-5764Image: National ScienceImage: National ScienceIm