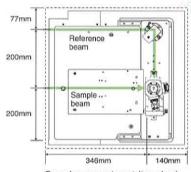
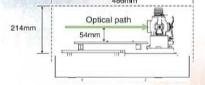
HITACHI SPECTROPHOTOMETER

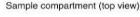
HITACHI

Measurement Systems for Optical Parts / New Materials



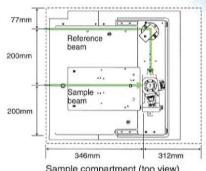


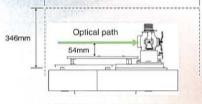
Solid Sample Measurement System


This system is suitable for transmittance/reflectance measurement of solid samples. It is possible to construct an suitable system according to the purpose of measurement in combination with optional accessories.

System Configuration Monochromator: Prism-grating / Sample compartment: Standard sample compartment / Detector: Standard integrating sphere / Measuring wavelength range: 240 to 2,600nm / Sample size: 200×200 mm max.

Sample compartment (side view)

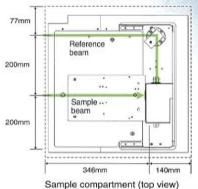


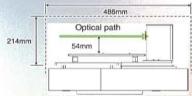


Large Sample Measurement System

This system permits non-destructive transmittance/reflectance measurement of various optical and electronic materials including large-sized glass, silicon wafer and liquid crystal board.

System Configuration Monochromator: Prism-grating / Sample compartment: Large sample compartment / Detector: Standard integrating sphere / Measuring wavelength range: 240 to 2,600nm / Sample size: 430 × 430mm max.


Sample compartment (top view)


Sample compartment (side view)

Ultraviolet Region Measurement System

This system is suitable for sample measurement in the ultraviolet region. Optical parts including light source, monochromator and detector are specialized for use in the ultraviolet region. The system is useful for transmittance/reflectance measurement of optical parts used in the ultraviolet region, such as parts for the excimer laser.

System Configuration Monochromator: Grating-grating / Sample compartment: Standard sample compartment / Detector: High-sensitivity integrating sphere / Measuring wavelength range: 175 to 2,600nm / Sample size: 200 \times 200mm max.

Sample compartment (side view)

U-4100

Customization according to Target Sample or Application Purpose Allows User to Construct an Suitable System.

The Model U-4100 Spectrophotometer allows the user to combine a monochromator, detector and sample compartment according to the target sample and application purpose.

It is possible to construct a system which satisfies various analytical needs (ultraviolet region measurement system which permits measurement down to 175nm, very large sample compartment for non-destructive measurement of large samples, for example).

The Model U-4100 ensures high-sensitivity analysis in a wide variety of fields including semi-conductor/new material development and biotechnology.

P.03

Micro Sample Reflectance Measurement System

Small 5° specular reflectance accessory (absolute) for U-4100: P/N 134-0103

P.05

Transmittance measurement system for micro samples

Transmittance measurement system for micro samples P/N: 1J0-0204

P.07

Measurement system for liquid samples

Detector Attachment P/N: 134-0219

P.09

Wafer Reflectance/Transmittance Measurement System

Top-mount transmittance/reflectance measurement unit (relative) for U-4100: P/N 134-0107

P.11

Optical Thin Film Reflection Measurement System

Variable angle absolute reflectance accessory: P/N 134-0116

P.13

Lens Transmittance Measurement System

Lens transmittance measurement accessory: P/N 134-0201 ø60 full-sphere accessory: P/N 134-0205

P.15

Other Accessories

P.17

Examples of Custom-designed System

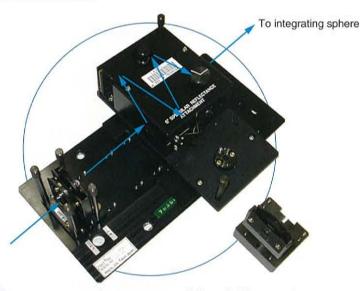
and Optional Software

For Liquid Sample Measurement

A system optimum for absorption/transmittance measurement of liquid samples is also available. The system is standard-equipped with a 10mm rectangular cell holder and adopts a photometric system which is based on direct irradiation of the detector. It covers a wide wavelength range and measuring range, thus enabling absorption/transmission measurement of various samples.

Micro Sample Reflectance Measurement System

Optical materials such as mirror and film can be evaluated by measuring the reflectance with the light irradiated squarely or at a low incident angle onto the object.


The reflectance does not appreciably change in an incident angle range of 0° to 5°. So evaluation is generally made by measuring the absolute reflectance at an incident angle of 5° instead of 0°.

In addition, because the incident angle is as low as 5°, there is little influence of polarization characteristics of a sample (which is not true of special samples), whereby a polarizer need not be used.

Introduced here is an example of measurement in the system employing "Small 5° specular reflectance accessory (absolute) for U-4100 (P/N 134-0103)".

This accessory permits absolute reflectance measurement at an incident angle of 5° for micro samples (ø7 to ø17mm, 0.2 to 2mm thick) by use of the micro sample holder. The accessory also permits measurement of a sample in the same size as with 5° specular reflectance accessory (absolute) for U-4100 (P/N 134-0102) (ø25 to ø50mm) if the micro sample holder is not used.

^{*} In addition to the 5° specular reflectance accessory (absolute) for U-4100 (P/N 134-0102), the 5° specular reflectance accessory (relative) for U-4100 (P/N 134-0100) is available for relative reflectance measurement of standard samples. The Reflectance accessories whose respective incident angles are 12°, 30° and 45° are also available.

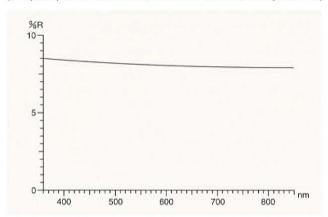
Appearance of Small 5° specular reflectance accessory (absolute) for U-4100 (P/N 134-0103)

Wavelength range	240 to 2,600nm	
Incident angle	5 ±1°	
Measuring method	Absolute/relative reflectance	
Beam size	Approx. 2.2 (W) × 2.2 (H)mm	
Sample mounting section	ø20mm	
Sample size	Refer to the table at right.	

The following optional holders are available for measurement of even smaller samples.

Micro sample holder 2 (P/N 132-7401)	Measuring section: ø2mm Sample size: ø3mm to ø18mm (12mm sq. or less)
Micro sample holder 4 (P/N 132-7403)	Measuring section: ø4mm Sample size: ø5mm to ø18mm (12mm sq. or less)

	Measurable Sample Size
In standard system	ø25 to ø50mm 25 (W) × 25 (H)mm to 150 (W) × 100 (H)mm
When using micro sample holder (refer to Fig. 1)	ø7 to ø17mm 5 × 5mm to 12 × 12mm


Fig. 1 Micro Sample Holder (standard-equipped)

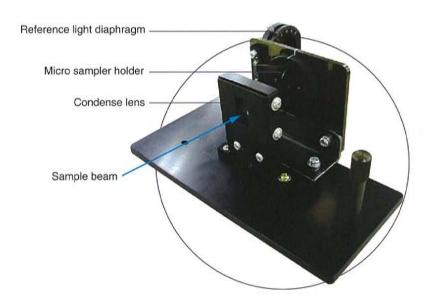
Applicable System			
Solid Sample Measurement System	Large Sample Measurement System	Ultraviolet Region Measurement System	Liquid Sample Measurement System
0	0	0	×

Example	of System Configuration
	U-4100 Spectrophotometer
134-0103	Small 5° specular reflectance accessory (absolute) for U-4100 (P/N 134-0103)

Example of Measurement

Measurement of reflectance (sample: optical material BK7, measured with micro sample holder)

Transmittance measurement system for micro samples


Transmittance measurements are taken to evaluate optical components such as micro lenses and micro filters.

For micro lenses such as endoscopic lenses and micro glasses and filters, etc., that are ø25mm or smaller, it can be difficult to focus the sample beam (light irradiated onto the sample) to a size smaller than the sample for irradiation at the center of the sample. Below, we introduce a system using the "Accessory unit for transmittance measurement of micro samples P/N:1J0-0204".

This accessory unit allows for easy setting and the measurement of even micro samples by using a condenser lens, reference light aperture, and a micro sample holder.

Transmittance measurement can be performed by using a micro sample holder (ø3 mask) on micro samples (ø5 to 20 and 0.2 to 3 mm thickness).

^{*} The other micro sample holder is also optional line upped that fits even smaller micro samples (ø3 to 20, 0.2 to 3 mm thickness).

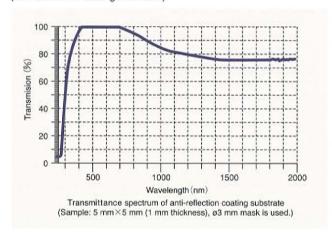
Appearance of accessory unit for transmission measurement of micro samples

Specifications of Accessory Unit

Mask type	Measurable sample size	
ø3 mm mask (Standard accessory)	ø5 to 20, 3 mm or less thickness	
ø1 mm mask (Optional) P/N 1J0-1860	ø3 to 20, 3 mm or less thickness	

^{*} The light-source mask should be replaced with the attached ø4 mm light-source mask.

Micro sample holder (standard -equipped)

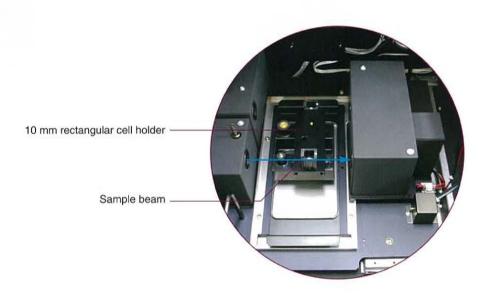

Item	Specification	
Baseline flatness (100% line) 240 to 850 nm 850 to 2,000 nm	±1.0%T or below (slit 6 nm, 300 nm/min) ±1.5%T or below (slit : Auto change, Pbs Gain: 2, 750 nm/min)	
Noise level (100%T, peak to peak) 500 nm 1,500 nm The specification of Ø1 mm mask is shown in parenthese ±1.0%T or below [±1.5%T or below] (slit 6 nm, measure ±1.0%T or below [±1.5%T or below] (slit : Auto change,		

Applicable System			
Solid Sample Measurement System	Large Sample Measurement System	Ultraviolet Region Measurement System	Liquid Sample Measurement System
0	0	0	×

Example	of System Configuration
	U-4100 Spectrophotometer
1J0-0204	Accessory unit for transmission measurement of micro samples (ø3 mm mask standard accessory
1J0-1860	Micro sample holder (ø1 mm mask)

Example of Measurement

Example of transmittance measurement (anti-reflection coating substrate)


Measurement system for liquid samples

A U-4100 solid sample measurement system or a large sample measurement system is used; thus, when a liquid sample with a narrow bandpass and less noise needs to be measured, use of an integrating sphere has limitations.

Here, we introduce the "Detector attachment P/N:134-0219".

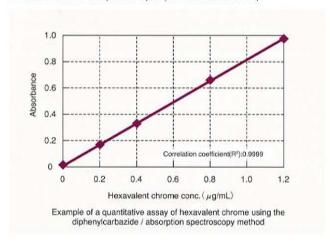
This accessory unit provides a large wavelength range (185 to 3,300 nm) and a large measurement range by changing the integrating sphere into optical measurement through use of the detector's normal incidence, which can measure the absorption/transmission of a wide range of samples.

* For use of cells other than 10 mm rectangular cells, please use a another cell holder.

Appearance of detector attachment

Specifications of Accessory Unit

Item	Specification	
Wavelength range	185 to 3,300 nm 10 mm square cell (prepared separately)	
Corresponding cell		
Stray light 220 nm Nal 220 nm NaNo2 340 nm Chloroform 1,690 nm	≤0.0008% ≤0.0005% ≤0.025%	
Baseline flatness (0Abs line) 185 to 200 nm 200 to 850 nm 850 to 2,500 nm 2,500 to 3,300 nm	±0.05Abs or below ±0.001Abs or below ±0.002Abs or below ±0.004Abs or below	<measuring conditions=""> Slit: 2 nm (UV-VIS), auto change (NIR), sampling interval: auto, Scan speed: 300 nm/min (UV-VIS), 750 nm/min (NIR) Measurement is conducted after user baseline correction (at 2 hours or more after power-on). Absorption wavelength of water, detector switching wavelength, and light-source switching wavelength are excluded.</measuring>
Noise level (0Abs,RMS) 500 nm 2,000 nm	0.00004Abs or below 0.00003Abs or below	<measuring conditions=""> Slit: 2 nm (UV-VIS), auto change (NIR), scan time: 60 s, sampling interval 1s (excluding drift).</measuring>

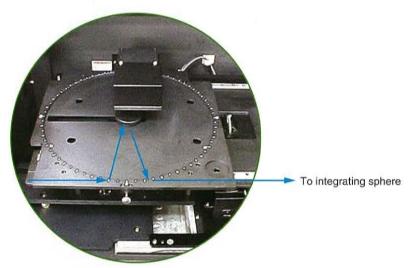

^{*}Additional installation to the existing U-4100 type is made at additional expense.

	Applicabl	e System	
Solid Sample Measurement System	Large Sample Measurement System	Ultraviolet Region Measurement System	Liquid Sample Measurement System
		0	

Example	of System Configuration
	U-4100 spectrophotometer
134-0219	Detector attachment

Example of Measurement

Measurement of a liquid sample (hexavalent chrome)



Wafer Reflectance /Transmittance Measurement System

The U-4100 Spectrophotometer (large sample measurement system) is available for non-destructive transmittance/reflectance measurement of various optical and electronic materials including large-sized glass, silicon wafer and liquid crystal board. Introduced here is an example of measurement in the system employing "Top-mount transmittance/reflectance measurement unit (relative) for U-4100 (P/N 134-0107)".

This accessory permits measurement of the relative reflectance to the reference sample at an incident angle of 5° and measurement of the transmittance at an incident angle of 0° (the absolute reflectance cannot be measured with this accessory). The accessory also permits reflectance/transmittance measurement at a desired angle on a sample with the moving/rotating stage.

* The top-mount transmittance/reflectance measurement unit (absolute) (P/N 134-0108) is available for absolute reflectance measurement

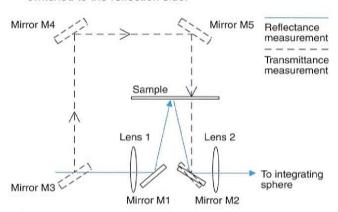
Appearance of Top-mount transmittance /reflectance measurement unit (relative) for U-4100 Optical system for relative reflectance measurement at 5° (arranged in U-4100 large sample compartment)

Wavelength range	240 to 2,600nm	
Incident angle	0 ±1° (transmission) 5 ±1° (reflection)	
Measuring method	Transmittance and relative reflectance	
Beam size	Approx. 8.2 (W) × 6.2 (H)mm (transmission) Approx. 9.5 (W) × 9.1 (H) mm (reflection)	
Sample size	Refer to the table at right.	
Measurable range	Sample center to position of 15mm from sample edge	

	Measurable Sample Size
When using ø6-inch sample holder	ø6-inch
When using ø8-inch sample holder	ø8-inch

* The accessory is standard-equipped with the ø6-inch sample holder, ø8-inch sample holder and flat sample holder.

Applicable System

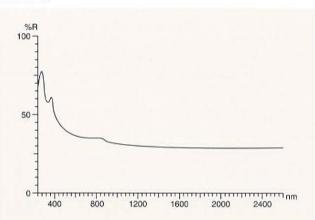

Solid Sample	Large Sample	Ultraviolet Region	Liquid Sample
Measurement System	Measurement System	Measurement System	Measurement System
×	0	×	×

Optical System

Transmittance measurement or reflectance measurement is selected by putting in/pulling out the mirror M3 and switching over the mirror M2.

- 1. Transmittance measurement
 - The optical path in transmittance measurement is indicated by dashed line in the figure below. The transmittance is measured with the mirror M3 inserted and the mirror M2 switched to the transmission side.
- 2. Reflectance measurement

The optical path in reflectance measurement is indicated by solid line in the figure below. The reflectance is measured with the mirror M3 pulled out and the mirror M2 switched to the reflection side.



Example of System Configuration

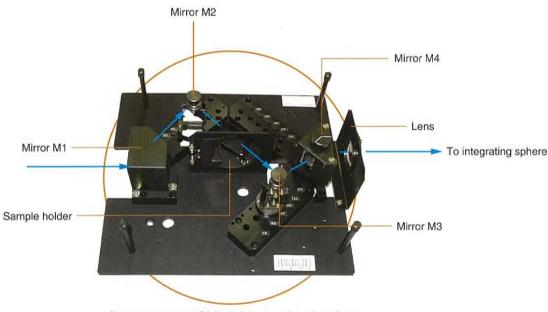
134-0006	U-4100 Spectrophotometer (large)	
134-0107	Top-mount transmittance/reflectance measurement unit (elative) for U-4100	

Example of Measurement

Measurement of reflectance (sample: ø6-inch silicon wafer, reference material: evaporized Aluminum)

Optical Thin Film Reflection Measurement System

Analysis of reflection/transmission characteristics and their angular dependence is indispensable in the field of optical materials such as film and thin film. Introduced here is an example of reflection spectrum measurement at variable incident angles with "Variable angle absolute reflectance accessory (10° to 60°) (P/N 134-0116)". When the incident angle is 12° or higher, the polarization characteristics of a sample increase. When this accessory is used, therefore, it is necessary to measure the S and P polarized components by use of a polarizer for accurate measurement.


* The following variable angle reflectance accessories are also available. Variable angle absolute reflectance accessory (15° to 65°) (P/N 134-0117): This accessory has a different incident angle range.

Variable angle absolute reflectance accessory (20° to 60°) (P/N 134-0115):

This accessory measures the absolute reflectance and transmittance at a desired angle by rotating the detector (integrating sphere) and sample stage independently of each other.

Variable angle reflectance accessory (relative) (20° to 60°) (P/N 134-0118):

This accessory measures the relative reflectance to the standard reflecting plate by utilizing the specular reflection of a sample.

Appearance of Variable angle absolute reflectance accessory (10° to 60°)

Wavelength range	240 to 2,600nm	
Incident angle	10°, 20°, 30°, 40°, 50°, 60°	
Measuring method	Absolute reflectance	
Beam size	Approx. 10.7 (H) × 6.4 (W)mm (at an incident angle of 10°)	
Sample holder	ø8 mm when using ø8–ø21	
Sample size	Refer to the table at right.	

Sample Size	Stand	Sample Holder Used
8 to 21mm sq., 5mm or less thick	Stand (1)	Sample holder ø8–ø21
21 to 45mm sq., 5mm or less thick	Stand (1)	Sample holder ø21-ø45
30mm cube to 90 (W) × 100 (H)mm, 5 mm or less thick	Stand (2)	_

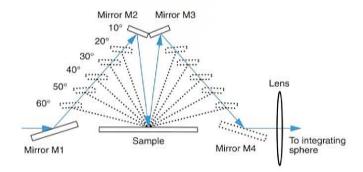
Stand (1)

Stand (2)

Sample holder ø8-ø21

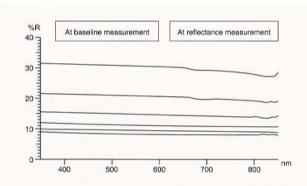
Sample holder ø21-ø45

Applicable System


Solid Sample	Large Sample	Ultraviolet Region	Liquid Sample
Measurement System	Measurement System	Measurement System	Measurement System
0	0	0	×

Optical System

This system permits measuring the absolute reflectance of a sample by displacing the mirror M3 and switching over the mirror M4. In addition, the incident angle can be changed in steps of 10° in a range of 10 to 60° by changing the respective insertion points of mirrors M2 and M3.

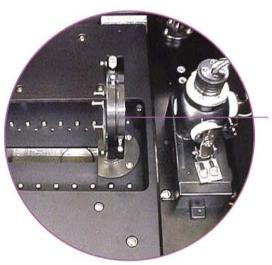

Example of System Configuration

	U-4100 Spectrophotometer	
134-0116	Variable angle absolute reflectance accessory (10° to 60°)	
132-0325	Polarizer holder (Separately prepare a polarizer.)	

Example of Measurement

Measurement of reflectance (sample: optical material BK7, S polarized component measured by polarizer)

Lens Transmittance Measurement System


Integrating sphere is indispensable for measuring the transmittance and reflection characteristics of solid samples including optical materials such as glass, lens and prism.

For measurement of the lens transmittance, use "Lens transmittance measurement accessory (P/N 134-0201)".

The light beam which has passed through the lens may overflow on the white plate of the standard integrating sphere. It is therefore advisable to use this accessory in combination with "ø60 full-sphere accessory (P/N 134-0205)".

*The large lens measurement unit (P/N 134-0203) is also available for transmittance measurement of a large lens (ø50 to ø200mm (300mm or less in length))

* The U-4100 (ultraviolet region measurement system) is standard-equipped with the high-sensitivity integrating sphere accessory (full-sphere). So the ø60 full-sphere accessory need not be used.

Appearance of Lens transmittance measurement unit

(arranged in U-4100 sample compartment)

Lens holder (25 to 80)

Appearance of ø60 full-sphere accessory

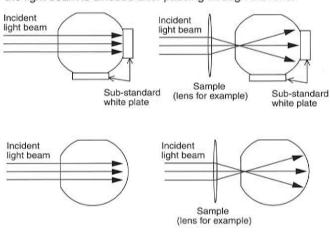
[Lens transmittance measurement accessory]

This accessory permits measuring the transmittance of a lens whose diameter is 25 to 110mm by replacing two kinds of lens holders. The distance from sample to integrating sphere can be changed in steps of 25mm.

Incident angle		O°	
Measuring m	suring method Transmittance		
Sample size	When using (25 to 80)	ø25 to ø80mm (6mm or less in fringe thickness)	
Lens Holder		ø40 to ø110mm (6mm or less in fringe thickness)	

[ø60 mm full integrating sphere accessory]

This accessory is not provided with a photometric window, which is arranged at the sub-standard white plate position of the U-4100 standard integrating sphere, and its inner wall is coated with barium sulfide (BaSO₄). If the light beam which has passed through a sample is diffused (in lens transmittance measurement for example), correct photometric values may not be obtained due to a difference in reflectance between the inner wall (BaSO₄) and sub-standard white plate (Al₂O₃) of the standard integrating sphere. This accessory is useful in such a case.

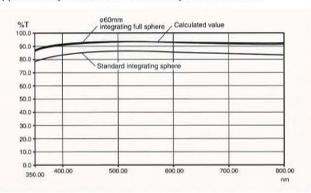

Wavelength range	240 to 2,600nm
Diameter of integrating sphere (inside)	60mm

Applicable System			
Solid Sample Measurement System	Large Sample Measurement System	Ultraviolet Region Measurement System	Liquid Sample Measurement System
0	0	0	×

Principle

With the U-4100 standard integrating sphere, the light beam which has been led into it may be reflected on both the substandard white plate and inner wall of the integrating sphere in measurement of a sample through which the light beam changes. In such a case, correct photometric values cannot be obtained because baseline measurement and sample measurement are not conducted under the same conditions due to a difference in reflectance between the sub-standard white plate and inner wall.

With the ø60mm integrating sphere, its inner wall is coated with BaSO₄, which enables correct measurement even when the light beam is diffused after passing through the lens.


Example of System Configuration

	U-4100 Spectrophotometer	
134-0201	Lens transmittance measurement accessory	
132-0205	ø60 full-sphere accessory	

Example of Measurement

Measurement of concave lens (2 pcs) with ø60mm integrating sphere and standard integrating sphere (same sample)
For a combination of two lenses, its transmittance has been measured to compare the calculated values and actually measured val-

sured to compare the calculated values and actually measured values. With the ø60mm integrating sphere, the calculated values approximately coincide with the actually measured ones.

A Full Array of Other Optional Accessories to Support the Diversified Measurement Needs

5° specular reflectance accessory (absolute)

134-0102

12° specular reflectance accessory (absolute)

134-0104

45° specular reflectance accessory (absolute)

134-0106

30° specular reflectance accessory (absolute)

134-0105

These accessories measure the absolute reflectance of a sample by the V-N method. They are used for obtaining the reflection characteristics of metallic film and glass surfaces according to the incident angle.

Be sure to use them in combination with a polarizer.

They are designed to set a sample on the side.

Common Specifications

Sample size	Absolute reflectance measurement: 25 × 25mm to 100 × 150mm	
Wavelength range	240 to 2,600nm	

5° specular reflectance accessory (relative) for U-4100

ive) for U-4100 134-0100

Sample size	Relative reflectance measurement:	
	25 × 25mm to 100 × 15mm	
Wavelength range	240 to 2,600nm	

Small prism measurement unit

134-0111

This unit measures the transmittance/reflectance of a microprism.

Incident angle	45°	
Sample size	5 to 6mm cube, 7 to 20mm cube	
Wavelength range	240 to 2,600nm	

Polarizer holder for U-4100 (polarizer not included)

132-0325

Variable angle transmittance measurement accessory

134-0200

This accessory permits transmittance at a desired incident angle (0 to 60°) by use of the rotating stage.

Incident angle 0° to 60°		
Beam size	Approx. 12.3 (H) × 8.5 (W)mm	
Wavelength range	240 to 2,600nm	
Sample size	40 × 40mm to 140 × 140mm, 3mm or less thick	

High-sensitivity integrating sphere accessory |

134-0206

This accessory is sensitive in the ultraviolet region. It is useful for transmittance/reflectance evaluation of optical parts used in the ultraviolet region, such as parts for the excimer laser.

Vavelength range 190 to 2,600nm		
Detector	Full sphere (with R955 photomultiplier)	
100%T line flatness	±0.5%T (195 to 850nm) ±2.0%T (190 to 195nm)	

Variable angle absolute reflectance accessory

134-0115

This accessory measures the absolute reflectance and transmittance at a desired angle by rotating the detector (integrating sphere) and sample stage independently of each other.

Incident angle	20° to 60°	
Sample size	Plane board: 30 × 30mm to 40 × 140mm Prism: 85mm cube or less	
Wavelength range	340 to 2,000nm	

Variable angle absolute reflectance accessory (10° to 60°)

134-0116

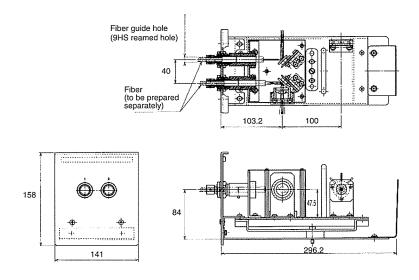
Variable angle absolute reflectance accessory (15° to 65°)

Refer to pages 7 and 8.

These accessories measure the absolute reflectance of a sample by the V-N method with the mirror inserted at a specified position.

Incident angle	134-0116: 10° to 60° (in 10° steps 134-0117: 15° to 65° (in 10° steps	
Sample size	8 × 8mm to 90 × 100mm	
Wavelength range	240 to 2,600nm	

Examples of Custom-designed System

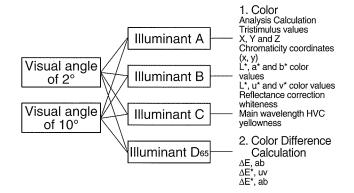

As exemplified below, the system can be customized according to the measuring object and application purpose.

For Measurement of Various Samples		
CD-R transmission/integrating sphere reflection system	Very large sample compartment	
Full glass plate transmittance measurement (auto/manual) system	Movable glass filter measurement system	
Strip fluorescent light measurement system	Optical pickup lens measurement system	
Circular fluorescent light measurement system	Special glass filter measurement system	
Plastic measurement system	Custom-designed polarizing sample measurement accessory	
Lens transmittance measurement system	Micro sample transmission measurement system	
Microprism measurement system	Microlens reflection/transmission measurement system	

Upon Request for Various Measurements		
35° absolute reflectance measurement system	Mobile ø60mm integrating sphere system	
57° absolute reflectance measurement system	Sample changer	
Large sample compartment + 73° relative reflectance measurement system	Automatic X-Y stage	
Cryostat system for large sample compartment	Heating stage	
20° to 60° reflection/transmission measurement system (position measurement possible)	Optical fiber system for reflected color measurement	
Large sample compartment + 4-opening high sensitivity integrating sphere system	Band gap measurement system	
ø200mm integrating sphere system	Multi-wavelength measurement program for remote measuring system	

Schematic Diagram of Optical Fiber Connecting Sample Compartment in Optical Fiber System

Shown below is the optical fiber connecting sample compartment for the liquid sample measurement system of the U-4100 Spectrophotometer. The sample beam is taken out through the optical fiber and returned to the detector in the sample compartment via the external sample compartment.


Color Analysis/Applied Measurement Program Package (134-0321)

Color Analysis

To specify the color of light or an object, it is convenient to pre-assign the illuminant, object and eyes and represent the results. The standard illuminant for measurement is prescribed by JIS Z8720, and the color specification in the XYZ color system by JIS Z8701. The color analysis program permits accurate color analysis through diffuse reflectance measurement of a solid sample surface. The measurement system conforms to JIS Z8722.

Using photometric values at 780 to 380 nm, this program figures out tristimulus values (X, Y, Z), lightness indices (L*, L), chromaticness indices (a*, b*, a, b, u*, v*), and chromaticity coordinates (x, y).

Moreover, with the tristimulus values (X, Y, Z) of standard sample, the program is capable of working out color differences (ΔE^*ab , ΔE^*uv , ΔEab).

Applied Measurement

This program conforms to the test procedure for the transmittance and reflectance of plate glass which is prescribed by JIS.

■ Daylight Transmittance (Reflectance) Measurement Program

This program measures the spectral transmittance and reflectance of plate glass in the visible region, and automatically calculates, from the measured values, the daylight transmittance τv and daylight reflectance ρv with the CIE (International Commission on Illumination) spectral luminous efficiency for photopic vision against the CIE standard illuminant D65.

$$\tau V = \begin{array}{c} 780 & 780 \\ \Sigma D \lambda \cdot V \lambda \cdot \tau \left(\lambda \right) & \Sigma D \lambda \cdot V \lambda \cdot \rho \left(\lambda \right) \\ \tau V = \frac{380}{780} & \rho V = \frac{380}{780} \\ \Sigma D \lambda \cdot V \lambda & \Sigma D \lambda \cdot V \lambda \\ 380 & 380 & 380 \end{array}$$

 $D\lambda$: Spectral distribution of standard illuminant D_{65} $V\lambda$: CIE spectral luminous efficiency for photopic vision

■ Solar Transmittance (Reflectance) Measurement Program

This program measures the spectral transmittance and spectral reflectance of plate glass, and automatically calculates the solar transmittance τe and solar reflectance ρe .

$$\begin{array}{ccc} 2100 & 2100 \\ \tau e = \sum D\lambda \cdot \Delta\lambda \cdot \tau \left(\lambda \right) & p e = \sum E\lambda \cdot \Delta\lambda \cdot \rho \left(\lambda \right) \\ 300 & 300 \end{array}$$

 τ (λ) : Spectral transmittance (measured value) ρ (λ) : Spectral reflectance (measured value)

Ελ : Standard spectral distribution of direct sunlight relative value

■ Summation Program

The above two programs conform to JIS (R3106), while this program is their general form. It multiplies the photometric value at each wavelength by factor τ (λ) and sums up the results thus obtained for normalization.

The program can cope with optional setting of factor α (λ), wavelength range and normalization factor.

$$S = \frac{\frac{\lambda_{2}}{\Sigma\alpha(\lambda) \cdot \tau(\lambda)}}{\frac{\lambda_{1}}{\lambda_{2}}} = \frac{1}{K} \frac{\lambda_{2}}{\Sigma\alpha(\lambda) \cdot \tau(\lambda)}$$

$$= \frac{1}{K} \frac{\lambda_{2}}{\lambda_{1}}$$

$$= \frac{\lambda_{2}}{\lambda_{1}}$$

$$= \frac{\lambda_{2}}{\lambda_{1}}$$

$$= \frac{\lambda_{2}}{\lambda_{1}}$$

$$= \frac{\lambda_{2}}{\lambda_{1}}$$

$$= \frac{\lambda_{2}}{\lambda_{1}}$$

■ Factor Input Program

This program is used to input a correction value (factor) at every wavelength interval $\Delta\lambda$ in a wavelength range of λ_1 to λ_2 . The summation program is executed by use of these input values. The wavelength interval can be specified individually for a maximum of 5 ranges. Up to 500 data values can be specified.

■ Spectrum Correction Program

This program functions to graphically display and record the product of photometric value at each wavelength multiplied by correction factor Ro (λ) . The correction factor can be optionally set by the user. The program is useful for measuring an absolute reflectance spectrum, etc.

 $\begin{array}{ll} R \; (\lambda) &= r \; (\lambda) \cdot Ro \; (\lambda) \\ R \; (\lambda) \; : \; & \text{Corrected data} \\ r \; (\lambda) \; : \; & \text{Measured data} \; (\%) \\ Ro \; (\lambda) \; : \; & \text{Correction factor data} \end{array}$

■ Correction Factor Input Program

This program is used to input correction factor data. Up to 500 data values can be specified.

■ Film Thickness Measurement Program

This program has the following functions:

- To calculate the thickness of a film sample from the measured interference spectrum, and present it on the CRT and printer.
- To automatically output onto the printer photometric values at the wavelengths corresponding to peaks and valleys of the measured interference spectrum.
- To calculate the difference between a reference film thickness and actually measured film thickness, and present it on the CRT and printer.

$$d = \frac{N - 1}{2\sqrt{n^2 - sin^2\theta}} \times \frac{1}{\frac{1}{\lambda_1} - \frac{1}{\lambda_2}} \times 10^{-3}$$

- d: Film thickness (µm) (calculated value)
- N: Number of interference peaks (automatically counted value)
- n: Refractive index (manually input value)
- $\boldsymbol{\theta}$: Incident angle (manually input value)
- $\lambda_{\scriptscriptstyle 1}\!:\! Wavelength$ of first peak on spectrum (nm)
- λ_2 : Wavelength of last peak on spectrum (nm)

	Solid sample/large sample /ultravioletregion measurement system	Liquid sample measurement system	
Monochromator	Prism-grating or grating-grating type monochro- mator, Pre-monochromator: Littrow type mono- chromator employing a diffraction grating or prism, Main monochromator: Diffraction grating (switchover between 2 gratings), Czerny-Turner type monochromator	Prism-grating double monochromator Pre-monochromator: Littrow type monochro- mator employing a prism, Main monochromator: Diffraction grating (switchover between 2 gratings), Czerny-Turner type monochromator	
Detector	Photomultiplier (UV-VIS)/cooled type Pbs (NIR) ø60mm integrating sphere whose inside wall is coated with BaSO ₄ or Spectralon Incident angle for reflective sample: 10° at both standard side and reference side	Photomultiplier (UV-VIS) /cooled typePbs (NIR)	
Sample compartment	Table-top sample compartment adaptable to very large samples Compartment size: 480 (W) × 470 (D) × 200 (H)mm (standard) 680 (W) × 470 (D) × 300 (H)mm (large) Beam spacing: 200mm	Compartment size: 120 (W) × 300 (D) × 140 (H)mm Beam spacing: 100mm	
Wavelength indication	In 0.01nm steps		
Slit width indication	Ultraviolet-visible region: Automatic control and to 8.0nm, Near infrared region: Automatic cont 0.18 to 20.0nm		
Wavelength accuracy	Ultraviolet-visible region: ±0.2nm, Near infrared region: ±1.0nm Automatic wavelength calibration function incorporated		
Wavelength reproducibility	Ultraviolet-visible region: ±0.1nm Near infrared region: ±0.5nm		
Wavelength scan speed	Automatic control and selection from among 0.3 (0.75), 3 (7.5), 15 (37.5), 30 (75), 60 (150), 120 (300), 300 (750), 600 (1.500), 1200 (3.000) and 2400 (6.000)nm/min * Wavelength scan speed in near infrared region is given in parentheses. Go To λ: 3600 (9000)nm/min		
Light source	Ultraviolet region: Deuterium lamp (quickly mountable type) Visible-near infrared region: 50W halogen lamp (lifetime 1,000hr)		
Switchover of light source	Automatic switchover linked with wavelength Wavelength for switchover optionally settable in a range of 325 to 370nm		
Stray light	=	0.00008% (at 220nm, using 10g/L Nal and 10mm cell 0.00005% (at 340nm, using 50g/L NaNO ₂ and 10mm cell 0.025% (at 1690nm, using chloroform and 10mm cell	
Photometric system	Double beam direct ratio photometry (negative at 100% or more measurable by Hitachi's unique Ultraviolet-visible region: Negative voltage cont Near infrared region: Slit control system and fib	differential feedback system) rol system and slit control system	
Photometric mode	Absorbance (Abs), transmittance (%T), reflectance (%R), reference-side energy (L(R))/sample-side energy (L(S))		
Photometric range	Absorbance: -2 to +5.0 Abs (in 0.001 Abs steps) Transmittance/reflectance: 0 to 999.99 (in 0.01% steps)		
Photometric accuracy	±0.002 Abs (0 to 0.5 Abs), ±0.004 Abs (0.5 to	1.0 Abs), ±0.3%T, Checked with NIST SRM 930	
Photometric reproducibility	±0.001 Abs (0 to 0.5 Abs), ±0.002 Abs (0.5 to 1.0 Abs), ±0.1%T, Checked with NIST SRM		
Response	Optimum value automatically set in linkage with slit width and wavelength scan speed		
Baseline correction	3 channels (1 channel for system baseline, 2 ch	nannels for user baseline)	
Baseline flatness	< ±0.002 Abs (240 to 850nm, slit 6nm) < ±0.004 Abs (850 to 2,200nm, slit automatically controlled) < ±0.008 Abs (2,200 to 2,600nm, slit automatically controlled)	<±0.004 Abs (187 to 220nm, slit 2nm) <±0.001 Abs (220 to 850nm, slit 2nm) <±0.002 Abs (850 to 2,500nm, slit 2nm) <sit automatically="" controlled)<="" p=""> <±0.004 Abs (2,500 to 3,300nm, slit automatically controlled)</sit>	
Baseline stability	Within 0.0004 Abs/hr (at 340nm) 2 hours after power on Within 0.0002 Abs/hr (at 500nm) 2 hours after power on		
Data processing unit	PC OS: Windows® XP Professional		
Operating temperature	15 to 35°C		
Operating humidity	45 to 80% (non-condensing; within 70% at 30°C or higher)		
Power consumption	100/115/220/240 V AC, 50/60Hz, 500VA		
Dimensions (spectrophotometer main unit)	730 (W) × 800 (D) × 880 (H)mm (standard sample compartment type) 930 (W) × 800 (D) × 980 (H)mm (large sample compartment type)	730 (W) × 700 (D) × 790 (H)mm	
Weight	120kg		

■ Functions

	Wavelength /Time Scan and Data Processing	Quantitative Calculation	
Spectrophoto- meter control	● Wavelength shift (Go To λ) ■ 100%T adjustment (auto zero) ■ Automatic wavelength calibration		
	 Measuring conditions Condition loading Condition saving (desired number of files, file rewriting/deletion possible) Automatic start function (measuring conditions automatically set upon turning on power) 		
Measuring conditions	-	 Condition setting for calibration curve (1st to 3rd order, segmented line) Standard data setting (20 standards, average of 20 data values 	
Execution of	Spectrum/spectral change with time Repetitive spectrum measurement S/N selectable by user (setting of sampling interval)	Remeasurement of calibration curve	
measurement	Baseline measurement (3 channels) (1 channel for system baseline, 2 channels for user baseline)		
III A KII SIII	Sample name Comment input Ruled line recording ON/OFF Measuring condition recording ON/OFF		
Recording /display	Recording/display of spectrum /spectral change with time Spectrum loading Spectrum saving	Calibration curve recording/display Data deletion Data loading Data saving Data list printout	
Data processing	Rescaling (numerical value input, cursor input) Spectrum trace Smoothing Data printout Graph axis conversion X axis: nm, kcm-1, eV, THz Y axis: Abs, %T, %R, E(S), E(R), ɛ, loge Spectral calculation (arithmetic calculation/coefficient calculation) Differentiation (1st to 4th order) Area calculation Data reset Rate calculation (only in time scan mode) Spectrum selection	Calibration curve trace Data printout Sample data erasure Statistic calculation Decision coefficient calculation	
Miscellaneous	File conversion (ASCII/JCAMP) Lamp ON time management Display format setting Cell length conversion Data transfer to Microsoft® Excel Graph copy Graph saving in meta-file Print preview		

^{*} Microsoft®, Windows®, Microsoft Excel, Microsoft Word and Windows® XP are registered trademarks, or trade names of Microsoft Corporation of the U.S.A., while other brand names and product names are those of their respective companies.

NOTICE: For proper operation, follow the instruction manual when using the instrument.

Specifications in this catalog are subject to change with or without notice, as Hitachi High-Technologies Corporation continues to develop the latest technologies and products for our customers.

@Hitachi High-Technologies Corporation

Tokyo, Japan

http://www.hitachi-hitec.com/global/science/

24-14 Nishi-Shimbashi 1-chome, Minato-ku, Tokyo, 105-8717, Japan

Tel: +81-3-3504-7211 Fax: +81-3-3504-7302

