Skip to main content

Hitachi High-Tech in Indonesia
  1. Home
  2. Products & Services
  3. Manufacturing-Related Equipment and Solutions
  4. Lithium-Ion Rechargeable Battery Solution
  5. Lithium-Ion Rechargeable Battery Solution:Electron microscopes for R&D

From the observation of bulk samples to the processing and observation of thin film samples, we have realized an analysis flow with atmosphere shut-off.

We, at Hitachi High-Tech, have realized an original "air protection system" for microstructure analysis of highly active lithium ion battery materials that easily react with the atmosphere. Sample processing by ion milling and SEM observations can be carried out with the bulk sample mounted on a special holder and shut off from the atmosphere. With this holder, you can process the sample into a thin film state by FIB-SEM while keeping the atmosphere shut off. In addition, STEM observations and analysis can be carried out by replacing with the air protection holder for mounting thin film samples. This system enables observation and analysis over a wide magnification range without bringing the sample into contact with the atmosphere.

observation of bulk samples to the processing and observation

Ultrahigh-Resolution Scanning Electron Microscope

SU8600

SU8600

Powerful tool for microstructural observation and composition analysis of materials

This ultrahigh-resolution scanning electron microscope is indispensable for research and development of carbon materials and polymer materials used for lithium-ion rechargeable batteries. The high-brightness cold FE electron gun and detection signal control function, provide high contrast images with high resolution.
The SU8600 is equipped with an optical system automatic adjustment function and an optional function to support automation of data acquisition, which enables automatic acquisition of large volumes of data.

Automated sequential imaging and automated pore size measurement of separator

The automated sequential imaging of a separator was performed using the EM Flow Creator software which automatically executes the acquisition of the SEM image. 345 clear SEM images in total were able to be acquired including 5 images each in 3 hours and 36 minutes, while changing visual fields between 5,000, 30,000, and 80,000 magnifications. The distribution of the fibrous fields of a separator has been able to be confirmed at a magnification of 5,000, the fibrous structure and image of the alternately aligned pores of a separator at 30,000, and the microstructure on the surface of a separator at 80,000.

SU8600

Ultrahigh-Resolution Schottky Scanning Electron Microscope

SU8700

SU8700

Powerful tool for microstructural observation and composition analysis of materials

This ultrahigh-resolution scanning electron microscope is indispensable for research and development of carbon materials and polymer materials used for lithium-ion rechargeable batteries. The standardly equipped Schottky FE electron gun responds to an extensive range of analytical methods from the observation of ultra-low accelerating voltages to high-speed analysis which requires a high irradiation current.
The SU8700 is equipped with an optical system automatic adjustment function and an optional function to support automation of data acquisition, which enables automatic acquisition of large volumes of data.

Observation of lithium-ion battery positive electrode material using an ultra-low accelerating SEM

Below are SEM images of LIB positive electrode material observed at an irradiation voltage of 10 V. In (a), the active material, conductive assistant, and the binder can be identified clearly by the shape and contrast. In (b) which is an observation of the magnified area enclosed in red in (a), the condition where the conductive assistant and active material are bonded via a binder, and the residual substance of the binder thinly adhered to the surface of the active material can be confirmed in detail. In the SU8700 which uses an electrostatic/electromagnetic field superposed objective lens, the outermost surface can also be observed easily by such ultra-low acceleration.

SU8700

Ion milling system

ArBlade 5000

Regulus Series

For milling, which is indispensable for sample preparation for lithium-ion battery analysis.

ArBlade 5000 is Hitachi High-Tech's most advanced model equipped with a hybrid ion milling function that supports cross-sectional milling and flat milling. This model is equipped with various functions for sample preparation required for evaluation of cathode and anode materials of lithium-ion batteries. The air protection cross-sectional milling holder was developed for lithium-ion battery materials whose shape changes significantly when they react with oxygen and moisture in the atmosphere. SEM observation can be carried out after ion milling without sample exposed to air. A cooling temperature control unit (optional) is provided for reducing damages by ion beam irradiation.

Example of cross-sectional milling of anode material of lithium-ion battery

SEM image of anode material of lithium-ion battery with atmosphere shut-off (a), and SEM image after exposing a sample to the atmosphere for about 10 minutes (b). In (a), the layer structure of graphite is clearly confirmed, but in (b), precipitates are formed throughout the cross section of the anode material due to contact with moisture and oxygen in the atmosphere, and the effectiveness of the air protection milling holder can be confirmed.

Regulus Series

Lithium-ion battery material preparation example for AFM

The surface that was smoothed by performing ion milling cross-sectional and plane processing on the lithium-ion battery cathode electrode material was observed in a vacuum using a scanning spreading resistance microscope (SSRM). The figure is an image in which the color of the electrical resistance distribution given by SSRM is superimposed on the 3D image given by AFM. The surface shape and properties can be seen clearly.

Regulus Series

Correlation analysis using SEM and AFM

SÆMic.

Enabling SEM and AFM correlation microscopy required for lithium-ion battery material observation.

Hitachi High-Tech's unique technology "SÆMic." enables correlation analysis using SEM and AFM. At the same observation point, it is possible to simultaneously analyze and evaluate the shape, composition, and elemental analysis, etc. by SEM (scanning electron microscope), 3D shape measurement by AFM (atomic force microscope), mechanical information, and electromagnetic property information. In addition, SÆMic. uses an air protection holder that completely shuts off the atmosphere, meaning that it can quickly analyze lithium-ion battery electrodes that are degraded by moisture or oxygen in the atmosphere.

Regulus Series

Ternary lithium-ion battery cathode material Li (Ni-Mn-Co) O2 measurement example by SEM-AFM correlative analysis

This is a measurement example in which cross-sectional fabrication and plane finishing are performed using an atmosphere shut-off holder, and observation and evaluation are performed using SEM and AFM. When exposed to the atmosphere, the surface undergoes a chemical reaction and changes in quality due to the effects of moisture and oxygen in the atmosphere. Under the condition with atmosphere shut-off, there is no such effect, and clear SEM contrast and electric resistance distribution given by SSRM are obtained.

Regulus Series

Focused ion and electron beam system

Ethos NX5000

Regulus Series

Dual capability of high-resolution observation at low accelerating voltage and real-time FIB process observation

The Ethos NX5000 is a high-performance FIB-SEM composite system equipped with a world-class high-intensity cold-cathode field emission electron gun and a newly developed magnetic/electrostatic compound objective lens. The system incorporates in a single specimen chamber an FIB column for specimen processing and an SEM column for high-magnification observation to enable high-resolution analysis of fine structure and composition at specific locations on a specimen surface and inside the specimen.

Real-time 3D analytical FIB-SEM

NX9000

Regulus Series

A novel approach FIB-SEM for ideal 3D imaging and analysis

NX9000 has unique orthogonal layout of SEM and FIB column for ideal 3D imaging and analysis. Due to this layout, it enables repeating sample milling and capturing images precisely. It delivers 3D fine structure of specimen in addition to 3D distribution of particles of electrode.

FIB microsampling, picking up thin film from selected region

Typical extracted sample size is 10 μm (horizontal) × 3 μm (thickness) × 10 μm (height). All the process is carried out inside high vacuum specimen chamber with monitoring both SEM and FIB.

Regulus Series

Air protection holder for thin film with sliding protection cylinder

Air protection holder equips cylinder which slides to the end of holder tip in order to isolate specimen from outside. It maintains specimen under inert gas atmosphere or vacuum. In addition, LN2 cooled holder is also available. This reduces thermal damage during sample preparation.

Regulus Series

Field emission transmission electron microscope

HF5000

Regulus Series

Capability for both high spatial resolution image and material analysis, a 200kV aberration-corrected FE-TEM/STEM/SEM.

HF5000 is embodiment of Hitachi's art of skill through the development of TEM. STEM spatial resolution of 0.078 nm, high-angle sample tilt, and large solid angle EDS (energy dispersive X-ray analyzer) are realized in a single pole piece. Hitachi High-Tech offers sub-Å-level spatial resolution and high analytical capability with variety of observations and analysis technique for a wide range of users, including those in the field of development and manufacturing of lithium-ion batteries.

Direct observation of Li atom in LiCoO2, lithium-ion battery positive electrode material

This is an ADF-STEM image and ABF-STEM image of LiCoO2 (LCO). Although the Co atomic column is clearly observed as bright contrast in the ADF-STEM image, the Li atom which is the light element cannot be observed. On the other hand, in the annular bright field (ABF) - STEM image which detects the electrons scattered at a low angle by an annular type detector, the Li atoms can also be observed with sufficient contrast, which indicates its effectiveness as a method to directly observe Li atoms in LCO crystals.

HF5000
Back to Top